23 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Nitrous oxide in brackish Lakes Shinji and Nakaumi, Japan

    No full text

    Dataset used to obtain an age model of marine sediment core KH19-6 Leg 4 PC10/MC14 from the Agulhas Ridge in the South Atlantic Ocean

    No full text
    An age model of marine sediment core is a prerequisite to start environmental studies of the past such as paleoceanography, paleoclimatology, and paleo-hazard studies. Here we report the comprehensive geochemical dataset used to determine the age model of marine sediment cores collected from Agulhas Ridge in the South Atlantic Ocean using piston coring and multiple-coring systems during the 30th Anniversary expeditions of R/V Hakuho Maru in 2019–2020 (KH19-6 Leg.4 PC10/MC14, water depth of 4,604 m). A whole 0.29-m-long multiple core (MC14) and the top 3.27 meter of 12.28-meter-long piston core (PC10) were dated. The dataset includes radiocarbon ages of planktonic foraminifera shells and oxygen isotopes of both planktonic (Globigerinoides bulloides, Globorotalia inflata) and benthic (Gyroidina soldanii) foraminifera shells. The results suggested that the top 7.5 kyr record was lost, the ages of 3.27 m depth below sea floor was ~140 kyr ago, and sedimentation rates were 0.9–5.5 kyr/cm

    Osimertinib early dose reduction as a risk to brain metastasis control in EGFR‐mutant non‐small cell lung cancer

    No full text
    Abstract Background The epidermal growth factor receptor (EGFR) mutation is a risk factor associated with brain metastases (BMs) in patients with non‐small cell lung cancer (NSCLC). This study aimed to evaluate the impact of osimertinib early dose reduction on BM worsening. Methods We retrospectively analyzed EGFR‐mutant NSCLC patients treated with osimertinib as first‐line treatment between August 2018 and October 2021. To evaluate the impact of osimertinib early dose reduction, we performed a landmark analysis of patients who achieved disease control at 4 months. Patients were divided into two groups according to whether the osimertinib dose was reduced or not, within 4 months after the start of treatment. We evaluated the time to BMs onset or progression, progression‐free survival, and overall survival. Results In total, 62 NSCLC patients with EGFR mutations were analyzed. Thirteen patients experienced early dose reduction of osimertinib treatment. Seven patients received osimertinib 40 mg daily, and six received 80 mg every other day. The most common reason for dose reduction was gastrointestinal toxicity (n = 4), followed by skin rashes (n = 3). The time to BMs onset or progression was significantly shorter in patients who experienced early dose reduction than in those who continued regular treatment (Hazard ratio 4.47, 95% confidence interval, 1.52–13.11). The 1‐year cumulative incidence of BM onset or progression was 23.1% in the reduced‐dose group and 5.0% in the standard dose group. The risk of worsening BMs with early dose reduction of osimertinib treatment was higher in patients who had BMs before treatment and in younger patients. Conclusion Early dose reduction of osimertinib was a risk factor for the worsening of BMs. A higher risk was associated with younger patients and those presenting BMs before treatment
    corecore