63 research outputs found

    Cyclosporin A Associated Helicase-Like Protein Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin B

    Get PDF
    BACKGROUND: Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology

    Phage display technology for target determination of small-molecule therapeutics: an update

    No full text
    IntroductionOur understanding of the mechanism of action of bioactive small molecules contributes to the research and development of new medical drugs, as well as elucidating the pathological mechanisms underlying various diseases. Researchers in this field are committed to a very ambitious goal: the discovery of novel therapeutic compounds along with their molecular targets. To achieve this goal, new methodological developments are indispensable.Areas coveredThis review gives an update on the advancements of phage display (PD) technology in the past decade (2011–2020) for determining the targets of the small molecule therapeutics. In particular, other than providing a brief overview of this field of research, we focus on reporting the research trends and the results solely obtained using this strategy.Expert opinionDespite the development of bioinformatics tools and artificial intelligence (AI)-mediated methods, affinity-guided information obtained experimentally are still indispensable to identify drug-protein interactions. By taking advantage of small-molecule-oriented PD methods and their improvements, the extension of the druggable proteome will be further expanded, providing new opportunities to generate small-molecule therapeutics

    Using the QCM Biosensor-Based T7 Phage Display Combined with Bioinformatics Analysis for Target Identification of Bioactive Small Molecule

    No full text
    Identification of target proteins that directly bind to bioactive small molecule is of great interest in terms of clarifying the mode of action of the small molecule as well as elucidating the biological phenomena at the molecular level. Of the experimental technologies available, T7 phage display allows comprehensive screening of small molecule-recognizing amino acid sequence from the peptide libraries displayed on the T7 phage capsid. Here, we describe the T7 phage display strategy that is combined with quartz-crystal microbalance (QCM) biosensor for affinity selection platform and bioinformatics analysis for small molecule-recognizing short peptides. This method dramatically enhances efficacy and throughput of the screening for small molecule-recognizing amino acid sequences without repeated rounds of selection. Subsequent execution of bioinformatics programs allows combinatorial and comprehensive target protein discovery of small molecules with its binding site, regardless of protein sample insolubility, instability, or inaccessibility of the fixed small molecules to internally located binding site on larger target proteins when conventional proteomics approaches are used

    Effects of imeglimin on mitochondrial function, AMPK activity, and gene expression in hepatocytes

    No full text
    Abstract Imeglimin is a recently launched antidiabetic drug structurally related to metformin. To provide insight into the pharmacological properties of imeglimin, we investigated its effects on hepatocytes and compared them with those of metformin. The effects of imeglimin on mitochondrial function in HepG2 cells or mouse primary hepatocytes were examined with an extracellular flux analyzer and on gene expression in HepG2 cells by comprehensive RNA-sequencing analysis. The effects of the drug on AMPK activity in HepG2 cells, mouse primary hepatocytes, and mouse liver were also examined. Treatment of HepG2 cells or mouse primary hepatocytes with imeglimin reduced the oxygen consumption rate coupled to ATP production. Imeglimin activated AMPK in these cells whereas the potency was smaller than metformin. Bolus administration of imeglimin in mice also activated AMPK in the liver. Whereas the effects of imeglimin and metformin on gene expression in HepG2 cells were similar overall, the expression of genes encoding proteins of mitochondrial respiratory complex III and complex I was upregulated by imeglimin but not by metformin. Our results suggest that imeglimin and metformin exert similar pharmacological effects on mitochondrial respiration, AMPK activity, and gene expression in cultured hepatocytes, whereas the two drugs differ in their effects on the expression of certain genes related to mitochondrial function

    Proteomic analysis of lymphoblastoid cells derived from monozygotic twins discordant for bipolar disorder: a preliminary study.

    Get PDF
    Bipolar disorder is a severe mental illness characterized by recurrent manic and depressive episodes. In bipolar disorder, family and twin studies suggest contributions from genetic and environmental factors; however, the detailed molecular pathogenesis is yet unknown. Thus, identification of biomarkers may contribute to the clinical diagnosis of bipolar disorder. Monozygotic twins discordant for bipolar disorder are relatively rare but have been reported. Here we performed a comparative proteomic analysis of whole cell lysate derived from lymphoblastoid cells of monozygotic twins discordant for bipolar disorder by using two-dimensional differential in-gel electrophoresis (2D-DIGE). We found approximately 200 protein spots to be significantly differentially expressed between the patient and the co-twin (t test, p<0.05). Some of the proteins were subsequently identified by liquid chromatography tandem mass spectrometry and included proteins involved in cell death and glycolysis. To examine whether these proteins could serve as biomarkers of bipolar disorder, we performed Western blot analysis using case-control samples. Expression of phosphoglycerate mutase 1 (PGAM1), which is involved in glycolysis, was significantly up-regulated in patients with bipolar disorder (t test, p<0.05). Although PGAM1 cannot be regarded as a qualified biomarker of bipolar disorder from this preliminary finding, it could be one of the candidates for further study to identify biomarkers of bipolar disorder

    Proton beam therapy for a patient with a giant thymic carcinoid tumor and severe superior vena cava syndrome

    No full text
    Surgical resection is the first choice for treatment of a thymic carcinoid tumor and radiotherapy is often performed as adjuvant therapy. Here, we report a case of an unresectable and chemoresistant thymic carcinoid tumor that was treated successfully using standalone proton beam therapy (PBT). The patient was a 66-year-old woman in whom surgical resection of the tumor was impossible because of cardiac invasion. Therefore, chemotherapy was administered. However, the tumor grew to 15 cm in diameter and she developed severe superior vena cava (SVC) syndrome. She was referred to our hospital and received PBT at a dose of 74 GyE in 37 fractions. PBT was conducted without severe early toxicities. After PBT, the tumor mildly shrunk to 13 cm in diameter and SVC syndrome almost disappeared. Subsequently, the tumor has continued to decrease in size slowly over the last 2 years and late toxicities have not been observed. Our experience with this case suggests that PBT may be effective for an unresectable thymic carcinoid tumor
    corecore