4,819 research outputs found

    Quantum Impurity in Luttinger Liquid: Universal Conductance with Entanglement Renormalization

    Get PDF
    We study numerically the universal conductance of Luttinger liquids wire with a single impurity via the Muti-scale Entanglement Renormalization Ansatz (MERA). The scale invariant MERA provides an efficient way to extract scaling operators and scaling dimensions for both the bulk and the boundary conformal field theories. By utilizing the key relationship between the conductance tensor and ground-state correlation function, the universal conductance can be evaluated within the framework of the boundary MERA. We construct the boundary MERA to compute the correlation functions and scaling dimensions for the Kane-Fisher fixed points by modeling the single impurity as a junction (weak link) of two interacting wires. We show that the universal behavior of the junction can be easily identified within the MERA and argue that the boundary MERA framework has tremendous potential to classify the fixed points in general multi-wire junctions.Comment: 14 pages, 18 figure

    Kinetic Parameters Evaluation for Isoprene Mixed with Aluminum Oxide

    Get PDF
    AbstractWe analyzed the basic hazard characteristics for isoprene in the manufacturing process by evaluating the runaway reaction, kinetic parameters and safety parameters in this study. Experiments were carried out by calculating the thermal decomposition reactions for isoprene and mixed with aluminum oxide in non-isothermal conditions by differential scanning calorimetry (DSC). Afterwards results indicated that isoprene had a conjugated double bond of unstable structure, and therefore it was prone to produce exothermic reaction during the process of polymerization. Aluminum oxide was applied to mix with isoprene, which could increase the heat release rate. Based on the results, safety information should be provided to government and relevant industries for prevention the accident occur in relevant plants

    Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment

    Get PDF
    Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations. To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because of the changes in surface morphology and crystalline structures, the multianalyte sensing performance was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors exhibit potential for use in future biomedical sensing device applications

    NONLINEAR FINITE ELEMENT 2D ANALYSIS FOR RC BEAMS STRENGTHENED BY EPOXY BONDED STEEL PLATES

    Get PDF
    ABSTRACT This paper presents the nonlinear finite element modeling of the global behavior for RC beam strengthened by externally epoxy bonded steel plates up to failure. In addition to the consideration of nonlinear behavior and cracking of concrete, the model involves interface element to capture not only the shear and normal stress concentration at the plate curtailment, but also the separation due to the exceeded peak shear and normal stress. The internal steel bar using truss element and the external steel plate using deformation theory of plastic have been confirmed by compare finite element solution with plastic theory. The proposed finite element solutions result in close correlation with experimental data available for RC beams strengthened by epoxy bonded steel plates with different thickness

    A New Large Super-Fast Rotator: (335433) 2005 UW163

    Get PDF
    Asteroids of size larger than 150 m generally do not have rotation periods smaller than 2.2 hours. This spin cutoff is believed to be due to the gravitationally bound rubble-pile structures of the asteroids. Rotation with periods exceeding this critical value will cause asteroid breakup. Up until now, only one object, 2001 OE84, has been found to be an exception to this spin cutoff. We report the discovery of a new super-fast rotator, (335433) 2005 UW163, spinning with a period of 1.290 hours and a lightcurve variation of r′∼0.8r'\sim0.8 mag from the observations made at the P48 telescope and the P200 telescope of the Palomar Observatory. Its Hr′=17.69±0.27H_{r'} = 17.69 \pm 0.27 mag and multi-band colors (i.e., g′−r′=0.68±0.03g'-r' = 0.68\pm0.03 mag, r′−i′=0.19±0.02r'-i' = 0.19\pm0.02 mag and SDSS i−z=−0.45i-z = -0.45 mag) show it is a V-type asteroid with a diameter of 0.6+0.3/−0.20.6 +0.3/-0.2 km. This indicates (335433) 2005 UW163 is a super-fast rotator beyond the regime of the small monolithic asteroid.Comment: 18 pages, 4 figures, 1 table Accepted by ApJ

    Environment Diversification with Multi-head Neural Network for Invariant Learning

    Full text link
    Neural networks are often trained with empirical risk minimization; however, it has been shown that a shift between training and testing distributions can cause unpredictable performance degradation. On this issue, a research direction, invariant learning, has been proposed to extract invariant features insensitive to the distributional changes. This work proposes EDNIL, an invariant learning framework containing a multi-head neural network to absorb data biases. We show that this framework does not require prior knowledge about environments or strong assumptions about the pre-trained model. We also reveal that the proposed algorithm has theoretical connections to recent studies discussing properties of variant and invariant features. Finally, we demonstrate that models trained with EDNIL are empirically more robust against distributional shifts.Comment: In Proceedings of 36th Conference on Neural Information Processing Systems (NeurIPS 2022

    Regulator of the mucoid phenotype A gene increases the virulent ability of extended-spectrum beta-lactamase-producing serotype non-K1/K2 Klebsiella pneumonia

    Get PDF
    BackgroundTo determine whether the presence of a capsule regulator gene [i.e., regulator of mucoid phenotype A (rmpA) gene] contributes to virulence on extended-spectrum β-lactamase-producing Klebsiella pneumoniae (ESBL-KP) with serotype non-K1/K2 strains.MethodsTwenty-eight ESBL-KP and non-ESBL-KP isolates were collected from the Tri-Service General Hospital (Taipei, Taiwan). The impact of the virulent rmpA gene in different capsular polysaccharide serotypes on ESBL-KP and non-ESBL-KP isolates was studied by a neutrophil phagocytosis reaction, a serum bactericidal assay, and an animal survival model.ResultsResistance to broad spectrum antibiotics was more prevalent in ESBL-KP strains than in non-ESBL-KP strains (p < 0.01). The ESBL-KP strains had different molecular patterns from non-ESBL-KP strains, based on pulsed-field gel electrophoresis. The frequency of serum-resistant isolates was the highest among ESBL-KP strains with rmpA (i.e., rmpA+) [71.4% (5/7)] than among of non-ESBL-KP rmpA+ strains [42.8% (6/14)], ESBL-KP strains without rmpA (rmpA−) [33.3% (7/21)], and non-ESBL-KP rmpA− strains [14.2% (2/14)]. The most significant increase in neutrophil resistance occurred in the ESBL-KP rmpA+ strains in comparison to the non-ESBL-KP rmpA+, ESBL-KP rmpA−, and non-ESBL-KP rmpA− strains (p < 0.01). The results of the animal survival model were compatible with the neutrophil phagocytosis reaction and serum bactericidal assay.ConclusionWe conclude that the pathogenic potential is greater in rmpA+ ESBL-KP strains than in rmpA– ESBL-KP and non-ESBL-KP strains

    Focal foveal atrophy of unknown etiology: Clinical pictures and possible underlying causes

    Get PDF
    Background/PurposeFocal foveal atrophy is defined as the presence of a small, focal, ill-defined, hypopigmented foveal or juxtafoveal lesion, with the remaining retina unaffected. The purpose of this study was to report the clinical characteristics and optical coherence tomography (OCT) in patients with focal foveal atrophy of unknown etiology.MethodsThe study was a retrospective observational case series. Data collected included complete ocular examination results for best corrected visual acuity (BCVA), ophthalmoscopy, fundus photography, fluorescein angiography, color sense discrimination tests, visual field tests, and OCT examinations.ResultsTwenty-three eyes in 21 patients were examined. The mean patient age was 49.2 ± 15.4 years. The mean BCVA was 20/25. The 21 patients were divided into three groups according to OCT results. Group 1 eyes (n = 10) had intact inner and outer hyperreflective layers (HRLs), with the signal of the inner HRL corresponding to the junction between the inner and outer photoreceptor segments and the outer HRL corresponding to the retinal pigment epithelium (RPE). Group 2 eyes (n = 9) had small hyporeflective defects with defects in the inner HRL at the fovea but an intact outer HRL. Group 3 eyes (n = 4) had small hyporeflective defects in both the inner and outer HRLs at the fovea. Groups 3 eyes had significantly lower visual acuity compared to Group 1 eyes and Group 2 eyes. There was no significant difference in visual acuity between Group 1 and Group 2 eyes. There were no significant differences among the groups with respect to color vision or foveal thickness.ConclusionThis is the first report of clinical presentations for patients with focal foveal atrophy of unknown etiology. OCT aided in the diagnosis and assessment of the degree of retinal structural abnormalities, but the real etiology of foveal atrophy remains unclear

    Asteroid Spin-Rate Study using the Intermediate Palomar Transient Factory

    Get PDF
    Two dedicated asteroid rotation-period surveys have been carried out using data taken on January 6-9 and February 20-23 of 2014 by the Intermediate Palomar Transient Factory (iPTF) in the RR~band with ∼20\sim 20-min cadence. The total survey area covered 174~deg2^2 in the ecliptic plane. Reliable rotation periods for 1,438 asteroids are obtained from a larger data set of 6,551 mostly main-belt asteroids, each with ≥10\geq 10~detections. Analysis of 1751, PTF based, reliable rotation periods clearly shows the "spin barrier" at ∼2\sim 2~hours for "rubble-pile" asteroids. We also found a new large-sized super-fast rotator, 2005 UW163 (Chang et al., 2014), and other five candidates as well. Our spin-rate distributions of asteroids with 3<D<153 < D < 15~km shows number decrease when frequency greater than 5 rev/day, which is consistent to that of the Asteroid Light Curve Database (LCDB, Warner et al., 2009) and the result of (Masiero et al., 2009). We found the discrepancy in the spin-rate distribution between our result and (Pravec et al., 2008, update 2014-04-20) is mainly from asteroids with Δm<0.2\Delta m < 0.2 mag that might be primarily due to different survey strategies. For asteroids with D≤3D \leq 3~km, we found a significant number drop at f=6f = 6 rev/day. The YORP effect timescale for small-sized asteroid is shorter that makes more elongate objets spun up to reach their spin-rate limit and results in break-up. The K-S test suggests a possible difference in the spin-rate distributions of C- and S-type asteroids. We also find that C-type asteroids have a smaller spin-rate limit than the S-type, which agrees with the general sense that the C-type has lower bulk density than the S-type.Comment: Submitted to ApJ (Jan, 2015). Accepted by ApJ (June, 2015). The whole set of the folded lightcurves will be available on the published articl
    • …
    corecore