10,574 research outputs found

    Analyses of mean and turbulent motion in the tropics with the use of unequally spaced data

    Get PDF
    Wind velocities from 25 km to 60 km over Ascension Island, Fort Sherman and Kwajalein for the period January 1970 to December 1971 are analyzed in order to achieve a better understanding of the mean flow, the eddy kinetic energy and the Eulerian time spectra of the eddy kinetic energy. Since the data are unequally spaced in time, techniques of one-dimensional covariance theory were utilized and an unequally spaced time series analysis was accomplished. The theoretical equations for two-dimensional analysis or wavenumber frequency analysis of unequally spaced data were developed. Analysis of the turbulent winds and the average seasonal variance and eddy kinetic energy of the turbulent winds indicated that maximum total variance and energy is associated with the east-west velocity component. This is particularly true for long period seasonal waves which dominate the total energy spectrum. Additionally, there is an energy shift for the east-west component into the longer period waves with altitude increasing from 30 km to 50 km

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    Parallel Exhaustive Search without Coordination

    Get PDF
    We analyze parallel algorithms in the context of exhaustive search over totally ordered sets. Imagine an infinite list of "boxes", with a "treasure" hidden in one of them, where the boxes' order reflects the importance of finding the treasure in a given box. At each time step, a search protocol executed by a searcher has the ability to peek into one box, and see whether the treasure is present or not. By equally dividing the workload between them, kk searchers can find the treasure kk times faster than one searcher. However, this straightforward strategy is very sensitive to failures (e.g., crashes of processors), and overcoming this issue seems to require a large amount of communication. We therefore address the question of designing parallel search algorithms maximizing their speed-up and maintaining high levels of robustness, while minimizing the amount of resources for coordination. Based on the observation that algorithms that avoid communication are inherently robust, we analyze the best running time performance of non-coordinating algorithms. Specifically, we devise non-coordinating algorithms that achieve a speed-up of 9/89/8 for two searchers, a speed-up of 4/34/3 for three searchers, and in general, a speed-up of k4(1+1/k)2\frac{k}{4}(1+1/k)^2 for any k1k\geq 1 searchers. Thus, asymptotically, the speed-up is only four times worse compared to the case of full-coordination, and our algorithms are surprisingly simple and hence applicable. Moreover, these bounds are tight in a strong sense as no non-coordinating search algorithm can achieve better speed-ups. Overall, we highlight that, in faulty contexts in which coordination between the searchers is technically difficult to implement, intrusive with respect to privacy, and/or costly in term of resources, it might well be worth giving up on coordination, and simply run our non-coordinating exhaustive search algorithms

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    Get PDF
    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment

    Janus Configurations, Chern-Simons Couplings, And The Theta-Angle in N=4 Super Yang-Mills Theory

    Full text link
    We generalize the half-BPS Janus configuration of four-dimensional N=4 super Yang-Mills theory to allow the theta-angle, as well as the gauge coupling, to vary with position. We show that the existence of this generalization is closely related to the existence of novel three-dimensional Chern-Simons theories with N=4 supersymmetry. Another closely related problem, which we also elucidate, is the D3-NS5 system in the presence of a four-dimensional theta-angle.Comment: 66 p

    Self-DUal SU(3) Chern-Simons Higgs Systems

    Get PDF
    We explore self-dual Chern-Simons Higgs systems with the local SU(3)SU(3) and global U(1)U(1) symmetries where the matter field lies in the adjoint representation. We show that there are three degenerate vacua of different symmetries and study the unbroken symmetry and particle spectrum in each vacuum. We classify the self-dual configurations into three types and study their properties.Comment: Columbia Preprint CU-TP-635, 19 page

    Ballistic transport, chiral anomaly and emergence of the neutral electron - hole plasma in graphene

    Full text link
    The process of coherent creation of particle - hole excitations by an electric field in graphene is quantitatively described using a dynamic "first quantized" approach. We calculate the evolution of current density, number of pairs and energy in ballistic regime using the tight binding model. The series in electric field strength EE up to third order in both DC and AC are calculated. We show how the physics far from the two Dirac points enters various physical quantities in linear response and how it is related to the chiral anomaly. The third harmonic generation and the imaginary part of conductivity are obtained. It is shown that at certain time scale tnlE1/2t_{nl}\propto E^{-1/2} the physical behaviour dramatically changes and the perturbation theory breaks down. Beyond the linear response physics is explored using an exact solution of the first quantized equations. While for small electric fields the I-V curve is linear characterized by the universal minimal resistivity σ=π/2(e2/h)\sigma =\pi /2(e^{2}/h)%, at t>tnlt>t_{nl} the conductivity grows fast. The copious pair creation (with rate E3/2E^{3/2}), analogous to Schwinger's electron - positron pair creation from vacuum in QED, leads to creation of the electron - hole plasma at ballistic times of order tnlt_{nl}. This process is terminated by a relaxational recombination.Comment: 15 pages, 5 figures
    corecore