12,539 research outputs found
Architecture and data processing alternatives for the tse computer. Volume 4: Image rotation using tse operations
The tse computer's capability of achieving image congruence between temporal and multiple images with misregistration due to rotational differences is reported. The coordinate transformations are obtained and a general algorithms is devised to perform image rotation using tse operations very efficiently. The details of this algorithm as well as its theoretical implications are presented. Step by step procedures of image registration are described in detail. Numerous examples are also employed to demonstrate the correctness and the effectiveness of the algorithms and conclusions and recommendations are made
The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories
By taking into account the effect of the would be Chern-Simons term, we
calculate the quantum correction to the Chern-Simons coefficient in
supersymmetric Chern-Simons Higgs theories with matter fields in the
fundamental representation of SU(n). Because of supersymmetry, the corrections
in the symmetric and Higgs phases are identical. In particular, the correction
is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result
should be quite general, and have important implication for the more
interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are
included, 13 pages, 1 figure, latex with revte
Signature of Schwinger's pair creation rate via radiation generated in graphene by strong electric current
Electron - hole pairs are copuously created by an applied electric field near
the Dirac point in graphene or similar 2D electronic systems. It was shown
recently that for sufficiently large electric fields and ballistic times the
I-V characteristics become strongly nonlinear due to Schwinger's pair creation.
Since there is no energy gap the radiation from the pairs' annihilation is
enhanced. The spectrum of radiation is calculated. The angular and polarization
dependence of the emitted photons with respect to the graphene sheet is quite
distinctive. For very large currents the recombination rate becomes so large
that it leads to the second Ohmic regime due to radiation friction.Comment: 9 pages, 7 figure
Ballistic transport, chiral anomaly and emergence of the neutral electron - hole plasma in graphene
The process of coherent creation of particle - hole excitations by an
electric field in graphene is quantitatively described using a dynamic "first
quantized" approach. We calculate the evolution of current density, number of
pairs and energy in ballistic regime using the tight binding model. The series
in electric field strength up to third order in both DC and AC are
calculated. We show how the physics far from the two Dirac points enters
various physical quantities in linear response and how it is related to the
chiral anomaly. The third harmonic generation and the imaginary part of
conductivity are obtained. It is shown that at certain time scale
the physical behaviour dramatically changes and the
perturbation theory breaks down. Beyond the linear response physics is explored
using an exact solution of the first quantized equations. While for small
electric fields the I-V curve is linear characterized by the universal minimal
resistivity %, at the conductivity grows
fast. The copious pair creation (with rate ), analogous to Schwinger's
electron - positron pair creation from vacuum in QED, leads to creation of the
electron - hole plasma at ballistic times of order . This process is
terminated by a relaxational recombination.Comment: 15 pages, 5 figures
SUSY QCD Corrections to Higgs Pair Production from Bottom Quark Fusion
We present a complete next-to-leading order (NLO) calculation for the total
cross section for inclusive Higgs pair production via bottom-quark fusion at
the CERN Large Hadron Collider (LHC) in the minimal supersymmetric standard
model (MSSM) and the minimal supergravity model (mSUGRA). We emphasize the
contributions of squark and gluino loops (SQCD) and the decoupling properties
of our results for heavy squark and gluino masses. The enhanced couplings of
the b quark to the Higgs bosons in supersymmetric models with large tanb yield
large NLO SQCD corrections in some regions of parameter space.Comment: 24 pages, 10 figure
Replica Placement on Bounded Treewidth Graphs
We consider the replica placement problem: given a graph with clients and
nodes, place replicas on a minimum set of nodes to serve all the clients; each
client is associated with a request and maximum distance that it can travel to
get served and there is a maximum limit (capacity) on the amount of request a
replica can serve. The problem falls under the general framework of capacitated
set covering. It admits an O(\log n)-approximation and it is NP-hard to
approximate within a factor of . We study the problem in terms of
the treewidth of the graph and present an O(t)-approximation algorithm.Comment: An abridged version of this paper is to appear in the proceedings of
WADS'1
- …