442 research outputs found

    Methods for Collecting Milk from Mice

    Get PDF
    Mouse models offer unique opportunities to study mammary gland biology and lactation. Phenotypes within the mammary glands, especially those caused by genetic modification, often arise during lactation, and their study requires the collection of adequate volumes of milk. We describe two approaches for collecting milk from lactating mice. Both methods are inexpensive, are easy to use in the laboratory or classroom, are non-invasive, and yield adequate volumes of milk for subsequent analyses

    An improved competitive inhibition enzymatic immunoassay method for tetrodotoxin quantification

    Get PDF
    Quantifying tetrodotoxin (TTX) has been a challenge in both ecological and medical research due to the cost, time and training required of most quantification techniques. Here we present a modified Competitive Inhibition Enzymatic Immunoassay for the quantification of TTX, and to aid researchers in the optimization of this technique for widespread use with a high degree of accuracy and repeatability

    Z' signals in polarised top-antitop final states

    Full text link
    We study the sensitivity of top-antitop samples produced at all energy stages of the Large Hadron Collider (LHC) to the nature of an underlying Z' boson, in presence of full tree level standard model (SM) background effects and relative interferences. We concentrate on differential mass spectra as well as both spatial and spin asymmetries thereby demonstrating that exploiting combinations of these observables will enable one to distinguish between sequential Z's and those pertaining to Left-Right symmetric models as well as E6 inspired ones, assuming realistic final state reconstruction efficiencies and error estimates.Comment: 21 pages, 6 colour figures, 10 table

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Update on the Risk of Hepatocellular Carcinoma in Chronic Hepatitis B Virus Infection

    Get PDF
    Chronic hepatitis B virus infection is an important cause of liver-related morbidity and mortality, with hepatocellular carcinoma being the most life-threatening complication. Because of the highly variable clinical course of the disease, enormous research efforts have been made with the aim of revealing the factors in the natural history that are relevant to hepatocarcinogenesis. These include epidemiological studies of predisposing risk groups, viral studies of mutations within the hepatitis B viral genome, and clinical correlation of these risk factors in predicting the likelihood of development of hepatocellular cancer in susceptible hosts. This update addresses these risks, with emphasis on the latest research relevant to hepatocarcinogenesis

    A Few Bad Apples:A Model of Disease Influenced Agent Behaviour in a Heterogeneous Contact Environment

    Get PDF
    For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent’s disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence

    A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities

    Get PDF
    The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation

    Genetic Incompatibility Dampens Hybrid Fertility More Than Hybrid Viability: Yeast as a Case Study

    Get PDF
    Genetic incompatibility is believed to be the major cause of postzygotic reproductive isolation. Despite huge efforts seeking for speciation-related incompatibilities in the past several decades, a general understanding of how genetic incompatibility evolves in affecting hybrid fitness is not available, primarily due to the fact that the number of known incompatibilities is small. Instead of further mapping specific incompatible genes, in this paper we aimed to know the overall effects of incompatibility on fertility and viability, the two aspects of fitness, by examining 89 gametes produced by yeast S. cerevisiae - S. paradoxus F1 hybrids. Homozygous F2 hybrids formed by autodiploidization of F1 gametes were subject to tests for growth rate and sporulation efficiency. We observed much stronger defects in sporulation than in clonal growth for every single F2 hybrid strain, indicating that genetic incompatibility affects hybrid fertility more than hybrid viability in yeast. We related this finding in part to the fast-evolving nature of meiosis-related genes, and proposed that the generally low expression levels of these genes might be a cause of the observation
    corecore