11,603 research outputs found

    Some aspects of calculating flows about three-dimensional subsonic inlets

    Get PDF
    Based on the potential flow model, computations were carried out for various three-dimensional inlet models. Some of these calculated results are presented in the forms of surface static pressure, flow angularity, surface flow pattern, and inlet flow field. Comparisons with experimental data are also made

    Some aspects of calculating flows about three-dimensional subsonic inlets

    Get PDF
    Various three dimensional inlet models were calculated based on the potential flow model. Results are presented in the forms of surface static pressure, flow angularity, surface flow pattern, and inlet flow field. It is indicated that the extension of the lower lip can reduce the adverse pressure gradient and increase the flow separation bound

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Covariant gaussian approximation in Ginzburg - Landau model

    Full text link
    Condensed matter systems undergoing second order transition away from the critical fluctuation region are usually described sufficiently well by the mean field approximation. The critical fluctuation region, determined by the Ginzburg criterion, T/Tc1Gi\left \vert T/T_{c}-1\right \vert \ll Gi, is narrow even in high TcT_{c} superconductors and has universal features well captured by the renormalization group method. However recent experiments on magnetization, conductivity and Nernst effect suggest that fluctuations effects are large in a wider region both above and below TcT_{c}. In particular some "pseudogap" phenomena and strong renormalization of the mean field critical temperature TmfT_{mf} can be interpreted as strong fluctuations effects that are nonperturbative (cannot be accounted for by "gaussian fluctuations"). The physics in a broader region therefore requires more accurate approach. Self consistent methods are generally "non - conserving" in the sense that the Ward identities are not obeyed. This is especially detrimental in the symmetry broken phase where, for example, Goldstone bosons become massive. Covariant gaussian approximation remedies these problems. The Green's functions obey all the Ward identities and describe the fluctuations much better. The results for the order parameter correlator and magnetic penetration depth of the Ginzburg - Landau model of superconductivity are compared with both Monte Carlo simulations and experiments in high TcT_{c} cuprates.Comment: 24 pages, 7 figure

    A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    Get PDF
    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution

    A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code

    Get PDF
    This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment
    corecore