10,246 research outputs found
Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories
An algebraic method is used to work out the mass spectra and symmetry
breaking patterns of general vacuum states in N=2 supersymmetric SU(n)
Chern-Simons-Higgs systems with the matter fields being in the adjoint
representation. The approach provides with us a natural basis for fields, which
will be useful for further studies in the self-dual solutions and quantum
corrections. As the vacuum states satisfy the SU(2) algebra, it is not
surprising to find that their spectra are closely related to that of angular
momentum addition in quantum mechanics. The analysis can be easily generalized
to other classical Lie groups.Comment: 17 pages, use revte
The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories
By taking into account the effect of the would be Chern-Simons term, we
calculate the quantum correction to the Chern-Simons coefficient in
supersymmetric Chern-Simons Higgs theories with matter fields in the
fundamental representation of SU(n). Because of supersymmetry, the corrections
in the symmetric and Higgs phases are identical. In particular, the correction
is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result
should be quite general, and have important implication for the more
interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are
included, 13 pages, 1 figure, latex with revte
User's guide for THERMIT-2 : a version of THERMIT for both core-wide and subchannel analysis of light water reactors
This report provides the THERMIT-2 user with programming and input information. THERMIT-2 is the most recent version of THERMIT. This new version contains all of the features and options of the original version of THERMIT documented in References 1 and 2. Additionally, the ability to analyze subchannels as well as improved modeling have been added to the code. These new additions are described in detail in Reference 3. The interested reader is referred to these references for further information about the physical modeling.In this report, the programming information is given first. This information includes details concerning the code and data structure. The description of the required input variables is presented next. After the meanings of these variables are given, the sample problems are described and the THERMIT-2 results are presented.THERMIT-2 contains subroutines from the IMSL Library, a proprietary package from International Mathematical and Statistical Libraries, Inc., Houston, Texas. These routines may not be redistributed or removed from this software for use in other software development, IMSL routines included are: LEQTIB, UERTST and UGETIO
A Fast and Efficient Incremental Approach toward Dynamic Community Detection
Community detection is a discovery tool used by network scientists to analyze
the structure of real-world networks. It seeks to identify natural divisions
that may exist in the input networks that partition the vertices into coherent
modules (or communities). While this problem space is rich with efficient
algorithms and software, most of this literature caters to the static use-case
where the underlying network does not change. However, many emerging real-world
use-cases give rise to a need to incorporate dynamic graphs as inputs.
In this paper, we present a fast and efficient incremental approach toward
dynamic community detection. The key contribution is a generic technique called
, which examines the most recent batch of changes made to an
input graph and selects a subset of vertices to reevaluate for potential
community (re)assignment. This technique can be incorporated into any of the
community detection methods that use modularity as its objective function for
clustering. For demonstration purposes, we incorporated the technique into two
well-known community detection tools. Our experiments demonstrate that our new
incremental approach is able to generate performance speedups without
compromising on the output quality (despite its heuristic nature). For
instance, on a real-world network with 63M temporal edges (over 12 time steps),
our approach was able to complete in 1056 seconds, yielding a 3x speedup over a
baseline implementation. In addition to demonstrating the performance benefits,
we also show how to use our approach to delineate appropriate intervals of
temporal resolutions at which to analyze an input network
Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100)
Epitaxial FeRh(100) films (CsCl structure, thick), prepared
{\it in-situ} on a W(100) single crystal substrate, have been investigated via
valence band and core level photoemission. The presence of the
temperature-induced, first-order, antiferromagnetic to ferromagnetic
(AF FM) transition in these films has been verified via linear
dichroism in photoemission from the Fe 3 levels. Core level spectra indicate
a large moment on the Fe atom, practically unchanged in the FM and AF phases.
Judging from the valence band spectra, the metamagnetic transition takes place
without substantial modification of the electronic structure. In the FM phase,
the spin-resolved spectra compare satisfactorily to the calculated
spin-polarized bulk band structure.Comment: 7 pages, 5 figure
The ideal gas as an urn model: derivation of the entropy formula
The approach of an ideal gas to equilibrium is simulated through a
generalization of the Ehrenfest ball-and-box model. In the present model, the
interior of each box is discretized, {\it i.e.}, balls/particles live in cells
whose occupation can be either multiple or single. Moreover, particles
occasionally undergo random, but elastic, collisions between each other and
against the container walls. I show, both analitically and numerically, that
the number and energy of particles in a given box eventually evolve to an
equilibrium distribution which, depending on cell occupations, is binomial
or hypergeometric in the particle number and beta-like in the energy.
Furthermore, the long-run probability density of particle velocities is
Maxwellian, whereas the Boltzmann entropy exactly reproduces the
ideal-gas entropy. Besides its own interest, this exercise is also relevant for
pedagogical purposes since it provides, although in a simple case, an explicit
probabilistic foundation for the ergodic hypothesis and for the maximum-entropy
principle of thermodynamics. For this reason, its discussion can profitably be
included in a graduate course on statistical mechanics.Comment: 17 pages, 3 figure
Inflationary Universe in Higher Derivative Induced Gravity
In an induced-gravity model, the stability condition of an inflationary
slow-rollover solution is shown to be . The presence of higher derivative terms
will, however, act against the stability of this expanding solution unless
further constraints on the field parameters are imposed. We find that these
models will acquire a non-vanishing cosmological constant at the end of
inflation. Some models are analyzed for their implication to the early
universe.Comment: 6 pages, two typos correcte
- …