38 research outputs found

    A novel delta current method for transport stoichiometry estimation.

    Get PDF
    BackgroundThe ion transport stoichiometry (q) of electrogenic transporters is an important determinant of their function. q can be determined by the reversal potential (Erev) if the transporter under study is the only electrogenic transport mechanism or a specific inhibitor is available. An alternative approach is to calculate delta reversal potential (ΔErev) by altering the concentrations of the transported substrates. This approach is based on the hypothesis that the contributions of other channels and transporters on the membrane to Erev are additive. However, Erev is a complicated function of the sum of different conductances rather than being additive.ResultsWe propose a new delta current (ΔI) method based on a simplified model for electrogenic secondary active transport by Heinz (Electrical Potentials in Biological Membrane Transport, 1981). ΔI is the difference between two currents obtained from altering the external concentration of a transported substrate thereby eliminating other currents without the need for a specific inhibitor. q is determined by the ratio of ΔI at two different membrane voltages (V1 and V2) where q = 2RT/(F(V2 -V1))ln(ΔI2/ΔI1) + 1. We tested this ΔI methodology in HEK-293 cells expressing the elctrogenic SLC4 sodium bicarbonate cotransporters NBCe2-C and NBCe1-A, the results were consistent with those obtained with the Erev inhibitor method. Furthermore, using computational simulations, we compared the estimates of q with the ΔErev and ΔI methods. The results showed that the ΔErev method introduces significant error when other channels or electrogenic transporters are present on the membrane and that the ΔI equation accurately calculates the stoichiometric ratio.ConclusionsWe developed a ΔI method for estimating transport stoichiometry of electrogenic transporters based on the Heinz model. This model reduces to the conventional reversal potential method when the transporter under study is the only electrogenic transport process in the membrane. When there are other electrogenic transport pathways, ΔI method eliminates their contribution in estimating q. Computational simulations demonstrated that the ΔErev method introduces significant error when other channels or electrogenic transporters are present and that the ΔI equation accurately calculates the stoichiometric ratio. This new ΔI method can be readily extended to the analysis of other electrogenic transporters in other tissues

    CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    Get PDF
    Na+-coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na+-coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode

    The sodium-driven chloride/bicarbonate exchanger in presynaptic terminals

    Get PDF
    The sodium-driven chloride/bicarbonate exchanger (NDCBE), a member of the SLC4 family of bicarbonate transporters, was recently found to modulate excitatory neurotransmission in hippocampus. By using light and electron microscopic immunohistochemistry, we demonstrate here that NDCBE is expressed throughout the adult rat brain, and selectively concentrates in presynaptic terminals, where it is closely associated with synaptic vesicles. NDCBE is in most glutamatergic axon terminals, and is also present in the terminals of parvalbumin-positive γ-aminobutyric acid (GABA)ergic cells. These findings suggest that NDCBE can regulate glutamatergic transmission throughout the brain, and point to a role for NDCBE as a possible regulator of GABAergic neurotransmission

    Defining the buffering process by a triprotic acid without relying on stewart-electroneutrality considerations

    Get PDF
    Upon the addition of protons to an aqueous solution, a component of the H+ load will be bound i.e. buffered. In an aqueous solution containing a triprotic acid, H+ can be bound to three different states of the acid as well as to OH- ions that are derived from the auto-ionization of H2O. In quantifying the buffering process of a triprotic acid, one must define the partitioning of H+ among the three states of the acid and also the OH- ions in solution in order to predict the equilibrium pH value. However, previous quantitative approaches that model triprotic acid titration behaviour and used to predict the equilibrium pH rely on the mathematical convenience of electroneutrality/charge balance considerations. This fact has caused confusion in the literature, and has led to the assumption that charge balance/electroneutrality is a causal factor in modulating proton buffering (Stewart formulation). However, as we have previously shown, although charge balance can be used mathematically as a convenient tool in deriving various formulae, electroneutrality per se is not a fundamental physicochemical parameter that is mechanistically involved in the underlying buffering and proton transfer reactions. The lack of distinction between a mathematical tool, and a fundamental physicochemical parameter is in part a reason for the current debate regarding the Stewart formulation of acid-base analysis. We therefore posed the following question: Is it possible to generate an equation that defines and predicts the buffering of a triprotic acid that is based only on H+ partitioning without incorporating electroneutrality in the derivation? Towards this goal, we derived our new equation utilizing: 1) partitioning of H+ buffering; 2) conservation of mass; and 3) acid-base equilibria. In validating this model, we compared the predicted equilibrium pH with the measured pH of an aqueous solution consisting of Na2HPO4 to which HCl was added. The measured pH values were in excellent agreement with the predictions of our equation. Our results provide further important evidence that one can mathematically model the chemistry of acid-base phenomenology without relying on electroneutrality (Stewart formulation) considerations

    Determination of Membrane Protein Transporter Oligomerization in Native Tissue Using Spatial Fluorescence Intensity Fluctuation Analysis

    Get PDF
    Membrane transporter proteins exist in a complex dynamic equilibrium between various oligomeric states that include monomers, dimers, dimer of dimers and higher order oligomers. Given their sub-optical microscopic resolution size, the oligomerization state of membrane transporters is difficult to quantify without requiring tissue disruption and indirect biochemical methods. Here we present the application of a fluorescence measurement technique which combines fluorescence image moment analysis and spatial intensity distribution analysis (SpIDA) to determine the oligomerization state of membrane proteins in situ. As a model system we analyzed the oligomeric state(s) of the electrogenic sodium bicarbonate cotransporter NBCe1-A in cultured cells and in rat kidney. The approaches that we describe offer for the first time the ability to investigate the oligomeric state of membrane transporter proteins in their native state

    Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula

    No full text
    Upon the addition of protons to an aqueous solution containing multiple buffers, the final H+ concentration ([H+]) at equilibrium is determined by the partitioning of added H+ among the various buffer components. In the analysis of acid-base chemistry, the Henderson-Hasselbalch equation and the Stewart strong ion formulation can only describe (rather than predict) the equilibrium pH following a proton load since these formulas calculate the equilibrium pH only when the reactant concentrations at equilibrium1 are already known. In this regard, it is simpler to directly measure the equilibrium pH rather than measure the equilibrium reactant concentrations to calculate the equilibrium pH. As these formulas cannot predict the final equilibrium [H+] following a proton load to a multiple-buffered aqueous solution, we developed a new quantitative approach for predicting the equilibrium [H+] that is based on the preequilibrium2 concentrations of all buffers in an aqueous solution. The mathematical model used to derive our equation is based on proton transfer buffer equilibria without requiring the incorporation of electroneutrality considerations. The model consists of a quartic polynomial equation that is derived based solely on the partitioning of H+ among the various buffer components. We tested the accuracy of the model using aqueous solutions with various buffers and measured the equilibrium pH values following the addition of HCl. Our results confirmed the accuracy of our new equation (r2 = 1; measured pH vs. predicted pH), indicating that it quantitatively accounts for the underlying acid-base phenomenology

    Interplay between Disulfide Bonding and N-Glycosylation Defines SLC4 Na+-coupled Transporter Extracellular Topography*

    No full text
    The extracellular loop 3 (EL-3) of SLC4 Na(+)-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys(583)-Cys(585) and Cys(617)-Cys(642), respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer
    corecore