1,531 research outputs found

    A multi-stage recurrent neural network better describes decision-related activity in dorsal premotor cortex

    Get PDF
    We studied how a network of recurrently connected artificial units solve a visual perceptual decision-making task. The goal of this task is to discriminate the dominant color of a central static checkerboard and report the decision with an arm movement. This task has been used to study neural activity in the dorsal premotor (PMd) cortex. When a single recurrent neural network (RNN) was trained to perform the task, the activity of artificial units in the RNN differed from neural recordings in PMd, suggesting that inputs to PMd differed from inputs to the RNN. We expanded our architecture and examined how a multi-stage RNN performed the task. In the multi-stage RNN, the last stage exhibited similarities with PMd by representing direction information but not color information. We then investigated how the representation of color and direction information evolve across RNN stages. Together, our results are a demonstration of the importance of incorporating architectural constraints into RNN models. These constraints can improve the ability of RNNs to model neural activity in association areas.https://doi.org/10.32470/CCN.2019.1123-0Accepted manuscrip

    Ruya: Memory-Aware Iterative Optimization of Cluster Configurations for Big Data Processing

    Full text link
    Selecting appropriate computational resources for data processing jobs on large clusters is difficult, even for expert users like data engineers. Inadequate choices can result in vastly increased costs, without significantly improving performance. One crucial aspect of selecting an efficient resource configuration is avoiding memory bottlenecks. By knowing the required memory of a job in advance, the search space for an optimal resource configuration can be greatly reduced. Therefore, we present Ruya, a method for memory-aware optimization of data processing cluster configurations based on iteratively exploring a narrowed-down search space. First, we perform job profiling runs with small samples of the dataset on just a single machine to model the job's memory usage patterns. Second, we prioritize cluster configurations with a suitable amount of total memory and within this reduced search space, we iteratively search for the best cluster configuration with Bayesian optimization. This search process stops once it converges on a configuration that is believed to be optimal for the given job. In our evaluation on a dataset with 1031 Spark and Hadoop jobs, we see a reduction of search iterations to find an optimal configuration by around half, compared to the baseline.Comment: 9 pages, 5 Figures, 3 Tables; IEEE BigData 2022. arXiv admin note: substantial text overlap with arXiv:2206.1385

    Selecting Efficient Cluster Resources for Data Analytics: When and How to Allocate for In-Memory Processing?

    Full text link
    Distributed dataflow systems such as Apache Spark or Apache Flink enable parallel, in-memory data processing on large clusters of commodity hardware. Consequently, the appropriate amount of memory to allocate to the cluster is a crucial consideration. In this paper, we analyze the challenge of efficient resource allocation for distributed data processing, focusing on memory. We emphasize that in-memory processing with in-memory data processing frameworks can undermine resource efficiency. Based on the findings of our trace data analysis, we compile requirements towards an automated solution for efficient cluster resource allocation.Comment: 4 pages, 3 Figures; ACM SSDBM 202

    Leveraging Reinforcement Learning for Task Resource Allocation in Scientific Workflows

    Full text link
    Scientific workflows are designed as directed acyclic graphs (DAGs) and consist of multiple dependent task definitions. They are executed over a large amount of data, often resulting in thousands of tasks with heterogeneous compute requirements and long runtimes, even on cluster infrastructures. In order to optimize the workflow performance, enough resources, e.g., CPU and memory, need to be provisioned for the respective tasks. Typically, workflow systems rely on user resource estimates which are known to be highly error-prone and can result in over- or underprovisioning. While resource overprovisioning leads to high resource wastage, underprovisioning can result in long runtimes or even failed tasks. In this paper, we propose two different reinforcement learning approaches based on gradient bandits and Q-learning, respectively, in order to minimize resource wastage by selecting suitable CPU and memory allocations. We provide a prototypical implementation in the well-known scientific workflow management system Nextflow, evaluate our approaches with five workflows, and compare them against the default resource configurations and a state-of-the-art feedback loop baseline. The evaluation yields that our reinforcement learning approaches significantly reduce resource wastage compared to the default configuration. Further, our approaches also reduce the allocated CPU hours compared to the state-of-the-art feedback loop by 6.79% and 24.53%.Comment: Paper accepted in 2022 IEEE International Conference on Big Data Workshop BPOD 202

    Predicting Dynamic Memory Requirements for Scientific Workflow Tasks

    Full text link
    With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approac

    The Nucleon Spin Polarizability at Order O(p4{\cal O}(p^4) in Chiral Perturbation Theory

    Get PDF
    We calculate the forward spin-dependent photon-nucleon Compton amplitude as a function of photon energy at the next-to-leading (O(p4){\cal O}(p^4)) order in chiral perturbation theory, from which we extract the contribution to nucleon spin polarizability. The result shows a large correction to the leading order contribution.Comment: 7 pages, latex, 2 figures included as .eps file

    Lotaru: Locally Predicting Workflow Task Runtimes for Resource Management on Heterogeneous Infrastructures

    Full text link
    Many resource management techniques for task scheduling, energy and carbon efficiency, and cost optimization in workflows rely on a-priori task runtime knowledge. Building runtime prediction models on historical data is often not feasible in practice as workflows, their input data, and the cluster infrastructure change. Online methods, on the other hand, which estimate task runtimes on specific machines while the workflow is running, have to cope with a lack of measurements during start-up. Frequently, scientific workflows are executed on heterogeneous infrastructures consisting of machines with different CPU, I/O, and memory configurations, further complicating predicting runtimes due to different task runtimes on different machine types. This paper presents Lotaru, a method for locally predicting the runtimes of scientific workflow tasks before they are executed on heterogeneous compute clusters. Crucially, our approach does not rely on historical data and copes with a lack of training data during the start-up. To this end, we use microbenchmarks, reduce the input data to quickly profile the workflow locally, and predict a task's runtime with a Bayesian linear regression based on the gathered data points from the local workflow execution and the microbenchmarks. Due to its Bayesian approach, Lotaru provides uncertainty estimates that can be used for advanced scheduling methods on distributed cluster infrastructures. In our evaluation with five real-world scientific workflows, our method outperforms two state-of-the-art runtime prediction baselines and decreases the absolute prediction error by more than 12.5%. In a second set of experiments, the prediction performance of our method, using the predicted runtimes for state-of-the-art scheduling, carbon reduction, and cost prediction, enables results close to those achieved with perfect prior knowledge of runtimes

    Macaw: The Machine Learning Magnetometer Calibration Workflow

    Full text link
    In Earth Systems Science, many complex data pipelines combine different data sources and apply data filtering and analysis steps. Typically, such data analysis processes are historically grown and implemented with many sequentially executed scripts. Scientific workflow management systems (SWMS) allow scientists to use their existing scripts and provide support for parallelization, reusability, monitoring, or failure handling. However, many scientists still rely on their sequentially called scripts and do not profit from the out-of-the-box advantages a SWMS can provide. In this work, we transform the data analysis processes of a Machine Learning-based approach to calibrate the platform magnetometers of non-dedicated satellites utilizing neural networks into a workflow called Macaw (MAgnetometer CAlibration Workflow). We provide details on the workflow and the steps needed to port these scripts to a scientific workflow. Our experimental evaluation compares the original sequential script executions on the original HPC cluster with our workflow implementation on a commodity cluster. Our results show that through porting, our implementation decreased the allocated CPU hours by 50.2% and the memory hours by 59.5%, leading to significantly less resource wastage. Further, through parallelizing single tasks, we reduced the runtime by 17.5%.Comment: Paper accepted in 2022 IEEE International Conference on Data Mining Workshops (ICDMW
    • …
    corecore