25 research outputs found

    Numerical Modelling of Polycrystalline Diamond device for Advanced Sensor Design

    Get PDF
    Abstract Technology Computer Aided Design (TCAD) simulation tools are routinely adopted within the design flow of semiconductor devices to simulate their electrical characteristics. However, the device level simulation of diamond is not straightforward within the state-of-the-art TCAD tools. Physical models have to be specifically formulated and tuned for single-crystal CVD (scCVD) and polycrystalline (pcCVD) diamond in order to account for, among others, incomplete ionization, intrinsic carrier free material, dependences of carrier transport on doping and temperature, impact ionization, traps and recombination centers effects. In this work, we propose the development and the application of a numerical model to simulate the electrical characteristics of polycrystalline diamond conceived for sensors fabrication. The model is based on the introduction of an articulated, yet physically based, picture of deep-level defects acting as recombination centers and/or trap states. This approach fosters the exploration and optimization of innovative semiconductor devices conjugating the capabilities of CMOS electronics devices and the properties of diamond substrates, e.g. for biological sensor applications or single particle detectors for High Energy Physics experiments

    Stability and efficiency of a CMOS sensor as detector of low energy beta and gamma particles

    Get PDF
    Radio Guided Surgery (RGS) is a nuclear medicine technique allowing the surgeon to identify tumor residuals in real time with a millimetric resolution, thanks to a radiopharmaceutical as tracer and a probe as detector. The use of beta(-) emitters, instead of gamma or beta(+), has been recently proposed with the aim to increase the technique sensitivity and reducing both the administered activity to the patient and the medical exposure. In this paper, the possibility to use the commercial CMOS Image Sensor MT9V115, originally designed for visible light imaging, as beta(-) radiation detector RGS is discussed. Being crucial characteristics in a surgical environment, in particular its stability against time, operating temperature, integration time and gain has been studied on laboratory measurements. Moreover, a full Monte Carlo simulation of the detector has been developed. Its validation against experimental data allowed us to obtain efficiency curves for both beta and gamma particles, and also to evaluate the effect of the covering heavy resin protective layer that is present in the "off the shelf" detector. This study suggests that a dedicated CMOS Image Sensor (i.e. one produced without the covering protective layer) represents the ideal candidate detector for RGS, able to massively increase the amount of application cases and the efficacy of this technique

    A Hydrogenated amorphous silicon detector for Space Weather Applications

    Full text link
    The characteristics of a hydrogenated amorphous silicon (a-Si:H) detector are presented here for monitoring in space solar flares and the evolution of large energetic proton events up to hundreds of MeV. The a-Si:H presents an excellent radiation hardness and finds application in harsh radiation environments for medical purposes, for particle beam characterization and in space weather science and applications. The critical flux detection threshold for solar X rays, soft gamma rays, electrons and protons is discussed in detail.Comment: 32 pages, 13 figures, submitted to Experimental Astronom

    A Study of the Radiation Tolerance and Timing Properties of 3D Diamond Detectors

    No full text
    : We present a study on the radiation tolerance and timing properties of 3D diamond detectors fabricated by laser engineering on synthetic Chemical Vapor Deposited (CVD) plates. We evaluated the radiation hardness of the sensors using Charge Collection Efficiency (CCE) measurements after neutron fluences up to 1016 n/cm2 (1 MeV equivalent.) The radiation tolerance is significantly higher when moving from standard planar architecture to 3D architecture and increases with the increasing density of the columnar electrodes. Also, the maximum applicable bias voltage before electric breakdown increases significantly after high fluence irradiation, possibly due to the passivation of defects. The experimental analysis allowed us to predict the performance of the devices at higher fluence levels, well in the range of 1016 n/cm2. We summarize the recent results on the time resolution measurements of our test sensors after optimization of the laser fabrication process and outline future activity in developing pixel tracking systems for high luminosity particle physics experiments

    Hydrogenated amorphous silicon high flux x-ray detectors for synchrotron microbeam radiation therapy

    No full text
    Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field. Quality assurance dosimetry for MRT must therefore overcome a significant challenge, as detectors require both a high dynamic range and a high spatial resolution to perform accurately. Approach. In this work, a series of radiation hard a-Si:H diodes, with different thicknesses and carrier selective contact configurations, have been characterised for x-ray dosimetry and real-time beam monitoring applications in extremely high flux beamlines utilised for MRT at the Australian Synchrotron. Results. These devices displayed superior radiation hardness under constant high dose-rate irradiations on the order of 6000 Gy s−1, with a variation in response of 10% over a delivered dose range of approximately 600 kGy. Dose linearity of each detector to x-rays with a peak energy of 117 keV is reported, with sensitivities ranging from (2.74 ± 0.02) nC/Gy to (4.96 ± 0.02) nC/Gy. For detectors with 0.8 μm thick active a-Si:H layer, their operation in an edge-on orientation allows for the reconstruction of micron-size beam profiles (microbeams). The microbeams, with a nominal full-width-half-max of 50 μm and a peak-to-peak separation of 400 μm, were reconstructed with extreme accuracy. The full-width-half-max was observed as 55 ± 1 μm. Evaluation of the peak-to-valley dose ratio and dose-rate dependence of the devices, as well as an x-ray induced charge (XBIC) map of a single pixel is also reported. Significance. These devices based on novel a-Si:H technology possess a unique combination of accurate dosimetric performance and radiation resistance, making them an ideal candidate for x-ray dosimetry in high dose-rate environments such as FLASH and MRT

    A hydrogenated amorphous silicon detector for Space Weather applications

    No full text
    The characteristics of a hydrogenated amorphous silicon (a-Si:H) detector are presented here for monitoring in space solar flares and the evolution of strong to extreme energetic proton events. The importance and the feasibility to extend the proton measurements up to hundreds of MeV is evaluated. The a-Si:H presents an excellent radiation hardness and finds application in harsh radiation environments for medical purposes, for particle beam characterization and, as we propose here, for space weather science applications. The critical flux detection limits for X rays, electrons and protons are discussed

    High-Resolution Photoemission Study of Neutron-Induced Defects in Amorphous Hydrogenated Silicon Devices

    No full text
    In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies
    corecore