21 research outputs found

    A distinct role for B1b lymphocytes in T cell-independent immunity

    Get PDF
    Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens

    Increased interferon-gamma (IFN-γ) levels produced in vitro by alloactivated T lymphocytes in systemic sclerosis and Raynaud's phenomenon

    No full text
    The aim of the present study was to analyse the in vitro proliferation and cytokine production by alloantigen-stimulated peripheral blood mononuclear cells (PBMC) obtained from patients affected by systemic sclerosis (SSc) and patients with Raynaud's phenomenon (RP). In SSc patients the proliferation of PBMC stimulated in vitro with alloantigens was significantly increased compared with healthy subjects, while no differences were observed for RP patients. Lymphocytes from SSc patients also produced larger amounts of IFN-γ compared with healthy controls. However, patients with clinically active disease had lower IFN-γ levels than those found in clinically stable patients. Patients affected by RP showed significantly higher levels of IFN-γ than healthy subjects. Analysis at the clonal level of the lymphocyte subsets involved in alloantigen stimulation in one patient affected by active SSc, and one subject with RP confirmed the results obtained using PBMC. In particular, in the RP patient but not in the SSc patient, we observed a population of CD4+ T cells which proliferated to alloantigens in vitro and produced high levels of IFN-γ. We suggest that T lymphocytes producing high levels of IFN-γ might play a protective role in RP patients and in established scleroderma
    corecore