1,829 research outputs found

    Randomly Charged Polymers, Random Walks, and Their Extremal Properties

    Full text link
    Motivated by an investigation of ground state properties of randomly charged polymers, we discuss the size distribution of the largest Q-segments (segments with total charge Q) in such N-mers. Upon mapping the charge sequence to one--dimensional random walks (RWs), this corresponds to finding the probability for the largest segment with total displacement Q in an N-step RW to have length L. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large N limit. In particular, the size of the longest neutral segment has a distribution with a square-root singularity at l=L/N=1, an essential singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near l=1 is related to a another interesting RW problem which we call the "staircase problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=NN_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=N+N/(N++N)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    Ground States of Two-Dimensional Polyampholytes

    Full text link
    We perform an exact enumeration study of polymers formed from a (quenched) random sequence of charged monomers ±q0\pm q_0, restricted to a 2-dimensional square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We study the ground state properties of the polymers as a function of their excess charge QQ for all possible charge sequences up to a polymer length N=18. We find that the ground state of the neutral ensemble is compact and its energy extensive and self-averaging. The addition of small excess charge causes an expansion of the ground state with the monomer density depending only on QQ. In an annealed ensemble the ground state is fully stretched for any excess charge Q>0Q>0.Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    Self-consistent variational theory for globules

    Full text link
    A self-consistent variational theory for globules based on the uniform expansion method is presented. This method, first introduced by Edwards and Singh to estimate the size of a self-avoiding chain, is restricted to a good solvent regime, where two-body repulsion leads to chain swelling. We extend the variational method to a poor solvent regime where the balance between the two-body attractive and the three-body repulsive interactions leads to contraction of the chain to form a globule. By employing the Ginzburg criterion, we recover the correct scaling for the θ\theta-temperature. The introduction of the three-body interaction term in the variational scheme recovers the correct scaling for the two important length scales in the globule - its overall size RR, and the thermal blob size ξT\xi_{T}. Since these two length scales follow very different statistics - Gaussian on length scales ξT\xi_{T}, and space filling on length scale RR - our approach extends the validity of the uniform expansion method to non-uniform contraction rendering it applicable to polymeric systems with attractive interactions. We present one such application by studying the Rayleigh instability of polyelectrolyte globules in poor solvents. At a critical fraction of charged monomers, fcf_c, along the chain backbone, we observe a clear indication of a first-order transition from a globular state at small ff, to a stretched state at large ff; in the intermediate regime the bistable equilibrium between these two states shows the existence of a pearl-necklace structure.Comment: 7 pages, 1 figur

    Knots in Charged Polymers

    Full text link
    The interplay of topological constraints and Coulomb interactions in static and dynamic properties of charged polymers is investigated by numerical simulations and scaling arguments. In the absence of screening, the long-range interaction localizes irreducible topological constraints into tight molecular knots, while composite constraints are factored and separated. Even when the forces are screened, tight knots may survive as local (or even global) equilibria, as long as the overall rigidity of the polymer is dominated by the Coulomb interactions. As entanglements involving tight knots are not easy to eliminate, their presence greatly influences the relaxation times of the system. In particular, we find that tight knots in open polymers are removed by diffusion along the chain, rather than by opening up. The knot diffusion coefficient actually decreases with its charge density, and for highly charged polymers the knot's position appears frozen.Comment: Revtex4, 9 pages, 9 eps figure

    Folding of the Triangular Lattice with Quenched Random Bending Rigidity

    Full text link
    We study the problem of folding of the regular triangular lattice in the presence of a quenched random bending rigidity + or - K and a magnetic field h (conjugate to the local normal vectors to the triangles). The randomness in the bending energy can be understood as arising from a prior marking of the lattice with quenched creases on which folds are favored. We consider three types of quenched randomness: (1) a ``physical'' randomness where the creases arise from some prior random folding; (2) a Mattis-like randomness where creases are domain walls of some quenched spin system; (3) an Edwards-Anderson-like randomness where the bending energy is + or - K at random independently on each bond. The corresponding (K,h) phase diagrams are determined in the hexagon approximation of the cluster variation method. Depending on the type of randomness, the system shows essentially different behaviors.Comment: uses harvmac (l), epsf, 17 figs included, uuencoded, tar compresse

    Elasticity of Gaussian and nearly-Gaussian phantom networks

    Full text link
    We study the elastic properties of phantom networks of Gaussian and nearly-Gaussian springs. We show that the stress tensor of a Gaussian network coincides with the conductivity tensor of an equivalent resistor network, while its elastic constants vanish. We use a perturbation theory to analyze the elastic behavior of networks of slightly non-Gaussian springs. We show that the elastic constants of phantom percolation networks of nearly-Gaussian springs have a power low dependence on the distance of the system from the percolation threshold, and derive bounds on the exponents.Comment: submitted to Phys. Rev. E, 10 pages, 1 figur

    Statistical properties of charged interfaces

    Full text link
    We consider the equilibrium statistical properties of interfaces submitted to competing interactions; a long-range repulsive Coulomb interaction inherent to the charged interface and a short-range, anisotropic, attractive one due to either elasticity or confinement. We focus on one-dimensional interfaces such as strings. Model systems considered for applications are mainly aggregates of solitons in polyacetylene and other charge density wave systems, domain lines in uniaxial ferroelectrics and the stripe phase of oxides. At zero temperature, we find a shape instability which lead, via phase transitions, to tilted phases. Depending on the regime, elastic or confinement, the order of the zero-temperature transition changes. Thermal fluctuations lead to a pure Coulomb roughening of the string, in addition to the usual one, and to the presence of angular kinks. We suggest that such instabilities might explain the tilting of stripes in cuprate oxides. The 3D problem of the charged wall is also analyzed. The latter experiences instabilities towards various tilted phases separated by a tricritical point in the elastic regime. In the confinement regime, the increase of dimensionality favors either the melting of the wall into a Wigner crystal of its constituent charges or a strongly inclined wall which might have been observed in nickelate oxides.Comment: 17 pages, 11 figure
    corecore