3,110 research outputs found
The Phase Diagram of Crystalline Surfaces
We report the status of a high-statistics Monte Carlo simulation of
non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of
size up to nodes. We impose free boundary conditions. The free energy
is a gaussian spring tethering potential together with a normal-normal bending
energy. Particular emphasis is given to the behavior of the model in the cold
phase where we measure the decay of the normal-normal correlation function.Comment: 9 pages latex (epsf), 4 EPS figures, uuencoded and compressed.
Contribution to Lattice '9
Collapse of Randomly Self-Interacting Polymers
We use complete enumeration and Monte Carlo techniques to study
self--avoiding walks with random nearest--neighbor interactions described by
, where is a quenched sequence of ``charges'' on the
chain. For equal numbers of positive and negative charges (), the
polymer with undergoes a transition from self--avoiding behavior to a
compact state at a temperature . The collapse temperature
decreases with the asymmetry Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-
Theta-point universality of polyampholytes with screened interactions
By an efficient algorithm we evaluate exactly the disorder-averaged
statistics of globally neutral self-avoiding chains with quenched random charge
in monomer i and nearest neighbor interactions on
square (22 monomers) and cubic (16 monomers) lattices. At the theta transition
in 2D, radius of gyration, entropic and crossover exponents are well compatible
with the universality class of the corresponding transition of homopolymers.
Further strong indication of such class comes from direct comparison with the
corresponding annealed problem. In 3D classical exponents are recovered. The
percentage of charge sequences leading to folding in a unique ground state
approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl
From Collapse to Freezing in Random Heteropolymers
We consider a two-letter self-avoiding (square) lattice heteropolymer model
of N_H (out ofN) attracting sites. At zero temperature, permanent links are
formed leading to collapse structures for any fraction rho_H=N_H/N. The average
chain size scales as R = N^{1/d}F(rho_H) (d is space dimension). As rho_H -->
0, F(rho_H) ~ rho_H^z with z={1/d-nu}=-1/4 for d=2. Moreover, for 0 < rho_H <
1, entropy approaches zero as N --> infty (being finite for a homopolymer). An
abrupt decrease in entropy occurs at the phase boundary between the swollen (R
~ N^nu) and collapsed region. Scaling arguments predict different regimes
depending on the ensemble of crosslinks. Some implications to the protein
folding problem are discussed.Comment: 4 pages, Revtex, figs upon request. New interpretation and emphasis.
Submitted to Europhys.Let
Self-consistent variational theory for globules
A self-consistent variational theory for globules based on the uniform
expansion method is presented. This method, first introduced by Edwards and
Singh to estimate the size of a self-avoiding chain, is restricted to a good
solvent regime, where two-body repulsion leads to chain swelling. We extend the
variational method to a poor solvent regime where the balance between the
two-body attractive and the three-body repulsive interactions leads to
contraction of the chain to form a globule. By employing the Ginzburg
criterion, we recover the correct scaling for the -temperature. The
introduction of the three-body interaction term in the variational scheme
recovers the correct scaling for the two important length scales in the globule
- its overall size , and the thermal blob size . Since these two
length scales follow very different statistics - Gaussian on length scales
, and space filling on length scale - our approach extends the
validity of the uniform expansion method to non-uniform contraction rendering
it applicable to polymeric systems with attractive interactions. We present one
such application by studying the Rayleigh instability of polyelectrolyte
globules in poor solvents. At a critical fraction of charged monomers, ,
along the chain backbone, we observe a clear indication of a first-order
transition from a globular state at small , to a stretched state at large
; in the intermediate regime the bistable equilibrium between these two
states shows the existence of a pearl-necklace structure.Comment: 7 pages, 1 figur
Triple Products and Yang-Baxter Equation (II): Orthogonal and Symplectic Ternary Systems
We generalize the result of the preceeding paper and solve the Yang-Baxter
equation in terms of triple systems called orthogonal and symplectic ternary
systems. In this way, we found several other new solutions.Comment: 38 page
Apex Exponents for Polymer--Probe Interactions
We consider self-avoiding polymers attached to the tip of an impenetrable
probe. The scaling exponents and , characterizing the
number of configurations for the attachment of the polymer by one end, or at
its midpoint, vary continuously with the tip's angle. These apex exponents are
calculated analytically by -expansion, and numerically by simulations
in three dimensions. We find that when the polymer can move through the
attachment point, it typically slides to one end; the apex exponents quantify
the entropic barrier to threading the eye of the probe
A Census Of Highly Symmetric Combinatorial Designs
As a consequence of the classification of the finite simple groups, it has
been possible in recent years to characterize Steiner t-designs, that is
t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with
sufficiently strong symmetry properties. However, despite the finite simple
group classification, for Steiner t-designs with t > 2 most of these
characterizations have remained longstanding challenging problems. Especially,
the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of
particular interest and has been open for about 40 years (cf. [11, p. 147] and
[12, p. 273], but presumably dating back to 1965). The present paper continues
the author's work [20, 21, 22] of classifying all flag-transitive Steiner
3-designs and 4-designs. We give a complete classification of all
flag-transitive Steiner 5-designs and prove furthermore that there are no
non-trivial flag-transitive Steiner 6-designs. Both results rely on the
classification of the finite 3-homogeneous permutation groups. Moreover, we
survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics
Polymer-mediated entropic forces between scale-free objects
The number of configurations of a polymer is reduced in the presence of a
barrier or an obstacle. The resulting loss of entropy adds a repulsive
component to other forces generated by interaction potentials. When the
obstructions are scale invariant shapes (such as cones, wedges, lines or
planes) the only relevant length scales are the polymer size R_0 and
characteristic separations, severely constraining the functional form of
entropic forces. Specifically, we consider a polymer (single strand or star)
attached to the tip of a cone, at a separation h from a surface (or another
cone). At close proximity, such that h<<R_0, separation is the only remaining
relevant scale and the entropic force must take the form F=AkT/h. The amplitude
A is universal, and can be related to exponents \eta governing the anomalous
scaling of polymer correlations in the presence of obstacles. We use
analytical, numerical and epsilon-expansion techniques to compute the exponent
\eta for a polymer attached to the tip of the cone (with or without an
additional plate or cone) for ideal and self-avoiding polymers. The entropic
force is of the order of 0.1 pN at 0.1 micron for a single polymer, and can be
increased for a star polymer.Comment: LaTeX, 15 pages, 4 eps figure
Ground States of Two-Dimensional Polyampholytes
We perform an exact enumeration study of polymers formed from a (quenched)
random sequence of charged monomers , restricted to a 2-dimensional
square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We
study the ground state properties of the polymers as a function of their excess
charge for all possible charge sequences up to a polymer length N=18. We
find that the ground state of the neutral ensemble is compact and its energy
extensive and self-averaging. The addition of small excess charge causes an
expansion of the ground state with the monomer density depending only on .
In an annealed ensemble the ground state is fully stretched for any excess
charge .Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.
- …
