2,321 research outputs found

    Randomly Charged Polymers, Random Walks, and Their Extremal Properties

    Full text link
    Motivated by an investigation of ground state properties of randomly charged polymers, we discuss the size distribution of the largest Q-segments (segments with total charge Q) in such N-mers. Upon mapping the charge sequence to one--dimensional random walks (RWs), this corresponds to finding the probability for the largest segment with total displacement Q in an N-step RW to have length L. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large N limit. In particular, the size of the longest neutral segment has a distribution with a square-root singularity at l=L/N=1, an essential singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near l=1 is related to a another interesting RW problem which we call the "staircase problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=N−N_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ≈1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=∣N+−N−∣/(N++N−)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    Ground States of Two-Dimensional Polyampholytes

    Full text link
    We perform an exact enumeration study of polymers formed from a (quenched) random sequence of charged monomers ±q0\pm q_0, restricted to a 2-dimensional square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We study the ground state properties of the polymers as a function of their excess charge QQ for all possible charge sequences up to a polymer length N=18. We find that the ground state of the neutral ensemble is compact and its energy extensive and self-averaging. The addition of small excess charge causes an expansion of the ground state with the monomer density depending only on QQ. In an annealed ensemble the ground state is fully stretched for any excess charge Q>0Q>0.Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    Elasticity of Gaussian and nearly-Gaussian phantom networks

    Full text link
    We study the elastic properties of phantom networks of Gaussian and nearly-Gaussian springs. We show that the stress tensor of a Gaussian network coincides with the conductivity tensor of an equivalent resistor network, while its elastic constants vanish. We use a perturbation theory to analyze the elastic behavior of networks of slightly non-Gaussian springs. We show that the elastic constants of phantom percolation networks of nearly-Gaussian springs have a power low dependence on the distance of the system from the percolation threshold, and derive bounds on the exponents.Comment: submitted to Phys. Rev. E, 10 pages, 1 figur

    A Method for Measuring Desquamation and its Use for Assessing the Effects of Some Common Exfoliants

    Get PDF
    Desquamation has been measured in the past by a counting chamber technique after corneocytes are removed from the skin surface and disaggregated in a dilute surfactant solution. However, we have found that complete corneocyte disaggregation is not always possible when these aggregates are recovered from sites where patent peeling is induced. Corneocyte counting in such instances is difficult or impossible. We have devised a method of measuring desquamation wherein the desquamating cells are determined as the total alkali-soluble protein after they are removed from the skin surface with an inert, self-hardening gel. Highly reproducible desquamation rates are obtained, characteristic of the individual subject. Using some common exfoliants, we show that pharmacologic response, observed as an increase in desquamation rate, is also an individual characteristic

    Phase transitions of a tethered surface model with a deficit angle term

    Full text link
    Nambu-Goto model is investigated by using the canonical Monte Carlo simulations on fixed connectivity surfaces of spherical topology. Three distinct phases are found: crumpled, tubular, and smooth. The crumpled and the tubular phases are smoothly connected, and the tubular and the smooth phases are connected by a discontinuous transition. The surface in the tubular phase forms an oblong and one-dimensional object similar to a one-dimensional linear subspace in the Euclidean three-dimensional space R^3. This indicates that the rotational symmetry inherent in the model is spontaneously broken in the tubular phase, and it is restored in the smooth and the crumpled phases.Comment: 6 pages with 6 figure

    Polymer-mediated entropic forces between scale-free objects

    Full text link
    The number of configurations of a polymer is reduced in the presence of a barrier or an obstacle. The resulting loss of entropy adds a repulsive component to other forces generated by interaction potentials. When the obstructions are scale invariant shapes (such as cones, wedges, lines or planes) the only relevant length scales are the polymer size R_0 and characteristic separations, severely constraining the functional form of entropic forces. Specifically, we consider a polymer (single strand or star) attached to the tip of a cone, at a separation h from a surface (or another cone). At close proximity, such that h<<R_0, separation is the only remaining relevant scale and the entropic force must take the form F=AkT/h. The amplitude A is universal, and can be related to exponents \eta governing the anomalous scaling of polymer correlations in the presence of obstacles. We use analytical, numerical and epsilon-expansion techniques to compute the exponent \eta for a polymer attached to the tip of the cone (with or without an additional plate or cone) for ideal and self-avoiding polymers. The entropic force is of the order of 0.1 pN at 0.1 micron for a single polymer, and can be increased for a star polymer.Comment: LaTeX, 15 pages, 4 eps figure

    Two-Dimensional Polymers with Random Short-Range Interactions

    Full text link
    We use complete enumeration and Monte Carlo techniques to study two-dimensional self-avoiding polymer chains with quenched ``charges'' ±1\pm 1. The interaction of charges at neighboring lattice sites is described by qiqjq_i q_j. We find that a polymer undergoes a collapse transition at a temperature TθT_{\theta}, which decreases with increasing imbalance between charges. At the transition point, the dependence of the radius of gyration of the polymer on the number of monomers is characterized by an exponent νθ=0.60±0.02\nu_{\theta} = 0.60 \pm 0.02, which is slightly larger than the similar exponent for homopolymers. We find no evidence of freezing at low temperatures.Comment: 4 two-column pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    Polyelectrolyte Bundles

    Full text link
    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.Comment: 10 pages, 8 figure
    • …
    corecore