1,394 research outputs found

    Berezinians, Exterior Powers and Recurrent Sequences

    Full text link
    We study power expansions of the characteristic function of a linear operator AA in a pqp|q-dimensional superspace VV. We show that traces of exterior powers of AA satisfy universal recurrence relations of period qq. `Underlying' recurrence relations hold in the Grothendieck ring of representations of \GL(V). They are expressed by vanishing of certain Hankel determinants of order q+1q+1 in this ring, which generalizes the vanishing of sufficiently high exterior powers of an ordinary vector space. In particular, this allows to explicitly express the Berezinian of an operator as a rational function of traces. We analyze the Cayley--Hamilton identity in a superspace. Using the geometric meaning of the Berezinian we also give a simple formulation of the analog of Cramer's rule.Comment: 35 pages. LaTeX 2e. New version: paper substantially reworked and expanded, new results include

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=NN_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=N+N/(N++N)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    MUBs inequivalence and affine planes

    Full text link
    There are fairly large families of unitarily inequivalent complete sets of N+1 mutually unbiased bases (MUBs) in C^N for various prime powers N. The number of such sets is not bounded above by any polynomial as a function of N. While it is standard that there is a superficial similarity between complete sets of MUBs and finite affine planes, there is an intimate relationship between these large families and affine planes. This note briefly summarizes "old" results that do not appear to be well-known concerning known families of complete sets of MUBs and their associated planes.Comment: This is the version of this paper appearing in J. Mathematical Physics 53, 032204 (2012) except for format changes due to the journal's style policie

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    Two-Dimensional Polymers with Random Short-Range Interactions

    Full text link
    We use complete enumeration and Monte Carlo techniques to study two-dimensional self-avoiding polymer chains with quenched ``charges'' ±1\pm 1. The interaction of charges at neighboring lattice sites is described by qiqjq_i q_j. We find that a polymer undergoes a collapse transition at a temperature TθT_{\theta}, which decreases with increasing imbalance between charges. At the transition point, the dependence of the radius of gyration of the polymer on the number of monomers is characterized by an exponent νθ=0.60±0.02\nu_{\theta} = 0.60 \pm 0.02, which is slightly larger than the similar exponent for homopolymers. We find no evidence of freezing at low temperatures.Comment: 4 two-column pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    EXTENDED SUPERCONFORMAL SYMMETRY, FREUDENTHAL TRIPLE SYSTEMS AND GAUGED WZW MODELS

    Get PDF
    We review the construction of extended ( N=2 and N=4 ) superconformal algebras over triple systems and the gauged WZW models invariant under them. The N=2 superconformal algebras (SCA) realized over Freudenthal triple systems (FTS) admit extension to ``maximal'' N=4 SCA's with SU(2)XSU(2)XU(1) symmetry. A detailed study of the construction and classification of N=2 and N=4 SCA's over Freudenthal triple systems is given. We conclude with a study and classification of gauged WZW models with N=4 superconformal symmetry.Comment: Invited talk presented at the Gursey Memorial Conference I in Istanbul, Turkiye (June 6-10, 1994). To appear in the proceedings of the conference. (21 pages. Latex document.

    Collapse of Stiff Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length.Comment: 4 pages RevTex, 3 ps figures included using epsf, final version as appeared in PR

    Phase transitions of an intrinsic curvature model on dynamically triangulated spherical surfaces with point boundaries

    Full text link
    An intrinsic curvature model is investigated using the canonical Monte Carlo simulations on dynamically triangulated spherical surfaces of size upto N=4842 with two fixed-vertices separated by the distance 2L. We found a first-order transition at finite curvature coefficient \alpha, and moreover that the order of the transition remains unchanged even when L is enlarged such that the surfaces become sufficiently oblong. This is in sharp contrast to the known results of the same model on tethered surfaces, where the transition weakens to a second-order one as L is increased. The phase transition of the model in this paper separates the smooth phase from the crumpled phase. The surfaces become string-like between two point-boundaries in the crumpled phase. On the contrary, we can see a spherical lump on the oblong surfaces in the smooth phase. The string tension was calculated and was found to have a jump at the transition point. The value of \sigma is independent of L in the smooth phase, while it increases with increasing L in the crumpled phase. This behavior of \sigma is consistent with the observed scaling relation \sigma \sim (2L/N)^\nu, where \nu\simeq 0 in the smooth phase, and \nu=0.93\pm 0.14 in the crumpled phase. We should note that a possibility of a continuous transition is not completely eliminated.Comment: 15 pages with 10 figure

    No N=4 Strings on Wolf Spaces

    Get PDF
    We generalize the standard N=2N=2 supersymmetric Kazama-Suzuki coset construction to the N=4N=4 case by requiring the {\it non-linear} (Goddard-Schwimmer) N=4 N=4~ quasi-superconformal algebra to be realized on cosets. The constraints that we find allow very simple geometrical interpretation and have the Wolf spaces as their natural solutions. Our results obtained by using components-level superconformal field theory methods are fully consistent with standard results about N=4N=4 supersymmetric two-dimensional non-linear sigma-models and N=4N=4 WZNW models on Wolf spaces. We construct the actions for the latter and express the quaternionic structure, appearing in the N=4N=4 coset solution, in terms of the symplectic structure associated with the underlying Freudenthal triple system. Next, we gauge the N=4 N=4~ QSCA and build a quantum BRST charge for the N=4N=4 string propagating on a Wolf space. Surprisingly, the BRST charge nilpotency conditions rule out the non-trivial Wolf spaces as consistent string backgrounds.Comment: 31 pages, LaTeX, special macros are include

    Phase transition of triangulated spherical surfaces with elastic skeletons

    Full text link
    A first-order transition is numerically found in a spherical surface model with skeletons, which are linked to each other at junctions. The shape of the triangulated surfaces is maintained by skeletons, which have a one-dimensional bending elasticity characterized by the bending rigidity bb, and the surfaces have no two-dimensional bending elasticity except at the junctions. The surfaces swell and become spherical at large bb and collapse and crumple at small bb. These two phases are separated from each other by the first-order transition. Although both of the surfaces and the skeleton are allowed to self-intersect and, hence, phantom, our results indicate a possible phase transition in biological or artificial membranes whose shape is maintained by cytoskeletons.Comment: 15 pages with 10 figure
    corecore