2,179 research outputs found

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    Self-consistent variational theory for globules

    Full text link
    A self-consistent variational theory for globules based on the uniform expansion method is presented. This method, first introduced by Edwards and Singh to estimate the size of a self-avoiding chain, is restricted to a good solvent regime, where two-body repulsion leads to chain swelling. We extend the variational method to a poor solvent regime where the balance between the two-body attractive and the three-body repulsive interactions leads to contraction of the chain to form a globule. By employing the Ginzburg criterion, we recover the correct scaling for the θ\theta-temperature. The introduction of the three-body interaction term in the variational scheme recovers the correct scaling for the two important length scales in the globule - its overall size RR, and the thermal blob size ξT\xi_{T}. Since these two length scales follow very different statistics - Gaussian on length scales ξT\xi_{T}, and space filling on length scale RR - our approach extends the validity of the uniform expansion method to non-uniform contraction rendering it applicable to polymeric systems with attractive interactions. We present one such application by studying the Rayleigh instability of polyelectrolyte globules in poor solvents. At a critical fraction of charged monomers, fcf_c, along the chain backbone, we observe a clear indication of a first-order transition from a globular state at small ff, to a stretched state at large ff; in the intermediate regime the bistable equilibrium between these two states shows the existence of a pearl-necklace structure.Comment: 7 pages, 1 figur

    Effects of Self-Avoidance on the Tubular Phase of Anisotropic Membranes

    Get PDF
    We study the tubular phase of self-avoiding anisotropic membranes. We discuss the renormalizability of the model Hamiltonian describing this phase and derive from a renormalization group equation some general scaling relations for the exponents of the model. We show how particular choices of renormalization factors reproduce the Gaussian result, the Flory theory and the Gaussian Variational treatment of the problem. We then study the perturbative renormalization to one loop in the self-avoiding parameter using dimensional regularization and an epsilon-expansion about the upper critical dimension, and determine the critical exponents to first order in epsilon.Comment: 19 pages, TeX, uses Harvmac. Revised Title and updated references: to appear in Phys. Rev.

    Theta-point universality of polyampholytes with screened interactions

    Full text link
    By an efficient algorithm we evaluate exactly the disorder-averaged statistics of globally neutral self-avoiding chains with quenched random charge qi=±1q_i=\pm 1 in monomer i and nearest neighbor interactions qiqj\propto q_i q_j on square (22 monomers) and cubic (16 monomers) lattices. At the theta transition in 2D, radius of gyration, entropic and crossover exponents are well compatible with the universality class of the corresponding transition of homopolymers. Further strong indication of such class comes from direct comparison with the corresponding annealed problem. In 3D classical exponents are recovered. The percentage of charge sequences leading to folding in a unique ground state approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl

    Strongly regular graphs satisfying the 4-vertex condition

    Full text link
    We survey the area of strongly regular graphs satisfying the 4-vertex condition and find several new families. We describe a switching operation on collinearity graphs of polar spaces that produces cospectral graphs. The obtained graphs satisfy the 4-vertex condition if the original graph belongs to a symplectic polar space.Comment: 19 page

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Ground States of Two-Dimensional Polyampholytes

    Full text link
    We perform an exact enumeration study of polymers formed from a (quenched) random sequence of charged monomers ±q0\pm q_0, restricted to a 2-dimensional square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We study the ground state properties of the polymers as a function of their excess charge QQ for all possible charge sequences up to a polymer length N=18. We find that the ground state of the neutral ensemble is compact and its energy extensive and self-averaging. The addition of small excess charge causes an expansion of the ground state with the monomer density depending only on QQ. In an annealed ensemble the ground state is fully stretched for any excess charge Q>0Q>0.Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    Crumpling a Thin Sheet

    Full text link
    Crumpled sheets have a surprisingly large resistance to further compression. We have studied the crumpling of thin sheets of Mylar under different loading conditions. When placed under a fixed compressive force, the size of a crumpled material decreases logarithmically in time for periods up to three weeks. We also find hysteretic behavior when measuring the compression as a function of applied force. By using a pre-treating protocol, we control this hysteresis and find reproducible scaling behavior for the size of the crumpled material as a function of the applied force.Comment: revtex 4 pages, 6 eps figures submitted to Phys Rev. let

    Damping of sound waves in superfluid nucleon-hyperon matter of neutron stars

    Full text link
    We consider sound waves in superfluid nucleon-hyperon matter of massive neutron-star cores. We calculate and analyze the speeds of sound modes and their damping times due to the shear viscosity and non-equilibrium weak processes of particle transformations. For that, we employ the dissipative relativistic hydrodynamics of a superfluid nucleon-hyperon mixture, formulated recently [M.E. Gusakov and E.M. Kantor, Phys. Rev. D78, 083006 (2008)]. We demonstrate that the damping times of sound modes calculated using this hydrodynamics and the ordinary (nonsuperfluid) one, can differ from each other by several orders of magnitude.Comment: 15 pages, 5 figures, Phys. Rev. D accepte

    Folding transition of the triangular lattice in a discrete three--dimensional space

    Get PDF
    A vertex model introduced by M. Bowick, P. Di Francesco, O. Golinelli, and E. Guitter (cond-mat/9502063) describing the folding of the triangular lattice onto the face centered cubic lattice has been studied in the hexagon approximation of the cluster variation method. The model describes the behaviour of a polymerized membrane in a discrete three--dimensional space. We have introduced a curvature energy and a symmetry breaking field and studied the phase diagram of the resulting model. By varying the curvature energy parameter, a first-order transition has been found between a flat and a folded phase for any value of the symmetry breaking field.Comment: 11 pages, latex file, 2 postscript figure
    corecore