12 research outputs found

    Melanocortin Systems on Pigment Dispersion in Fish Chromatophores

    Get PDF
    α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes – termed melanocortin receptors (MCR) – a member of G-protein-coupled receptors (GPCR) – based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores

    Expression of melanotropin-related genes in goldfish brain, pituitary, and skin in response to background color

    Get PDF
    Poster presentado en el 17th International Congress of Comparative Endocrinology celebrado en Barcelona del 15 al 19 de julio de 2013In teleost fish, body color varies in response to changes in background color. The color is lighter in a white background than in a black background. Melanin- concentrating hormone (MCH) produced in hypothalamiand agouti signaling protein (ASP) in skins turn body color pale by aggregating pigments, while melanocyte-stimulating hormone (MSH) encoded on a proopiomelanocortin (POMC) gene disperses pigments. In the present study, we investigated the effects of a black or white background on expression levels of the genes for the hormonal peptides and corresponding receptors by real time RT-PCR in goldfish (Carassiusauratus).Peer Reviewe

    Pigment-dispersing activities and cortisol-releasing activities of melanocortins and their receptors in xanthophores and head kidneys of the goldfish Carassius auratus

    Get PDF
    The five subtypes of melanocortin receptors (MCRs) mediate the functions of α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH). In fish, these hormones are involved in pigment dispersion and cortisol release, respectively. α-MSH-related peptides exhibit ACTH-like activity in certain fishes. We recently found that multiple Mcr transcripts are expressed in some cell types in the barfin flounder, which is related to regulation of α-MSH activities. Similar results were also observed for the cortisol-releasing activity of α-MSH-related peptides in the head kidney. The present study was undertaken to assess relationship between the expression of multiply expressed Mcrs and α-MSH activities using goldfish. We also determined if α-MSH-related peptides exhibit ACTH-like activity in goldfish. The transcripts of Mc1r, but not those of other subtypes, were observed in xanthophores. α-MSH, which has an acetyl group at the N-terminus, was found to disperse pigment in a dose-dependent manner in xanthophores. This potency was found to be slightly greater than that of desacetyl-α-MSH. These results support our findings that MCR has a higher affinity for α-MSH when single Mcr subtype is expressed. On the other hand, transcripts of Mc2r, but not those of other subtypes, were observed in the head kidney. ACTH1-24-stimulated cortisol release was observed in a dose-dependent manner, while α-MSH-related peptides showed no activity. It therefore appears that MC2R also acts as an ACTH-specific receptor in goldfish and that association of α-MSH-related peptides upon release of cortisol is uncommon in fishes. © 2011 Elsevier Inc.Peer Reviewe

    Fluctuation of melanotropin receptors in goldfish skin

    No full text
    Poster en idioma original (japonés) presentado en The Japanese Society of Fisheries Science Spring Meeting celebrado en Tokyo del 19 al 22 de septiembre de 2013Peer Reviewe

    Data on the density of xanthophores in a whole scale of goldfish acclimated to white or black background color

    No full text
    The data presented in this article are related to the research article entitled “Expression of genes for melanotropic peptides and their receptors for morphological color change in goldfish Carassius auratus” (Mizusawa et al., In press) [1]. This article describes data on the density of xanthophores in the scales of goldfish acclimated to white or black background color. To determine the effects of acclimation history during long-term background color adaptation, fish were transferred from a white tank to a white or black tank and vice versa halfway through the acclimation process. To observe xanthophores, the iridophore layer was scraped from the scale and the pteridine/carotenoid pigments were aggregated. The number of xanthophores was calculated after image processingKM was funded by JSPS KAKENHI Grant Numbers JP24780192 and JP15K07586 from the Japan Society for the Promotion of Science. JM C-R was funded by AGL2016-74857-C3-3-R from Ministry for Economy and Competitiveness Spain (MINECO).Peer reviewe

    Data for Amino Acid Alignment of Japanese Stingray Melanocortin Receptors with other Gnathostome Melanocortin Receptor Sequences, and the Ligand Selectivity of Japanese Stingray Melanocortin Receptors

    No full text
    This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs) related to research published in “Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish” (Takahashi et al., 2016) [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR

    Characterization of Melanocortin Receptors from Stingray Dasyatis akajei, a Cartilaginous Fish

    No full text
    Melanocortin (MC) systems are composed of MC peptides such as adrenocorticotropic hormone (ACTH), several molecular forms of melanocyte-stimulating hormones (MSHs) and MC receptors (MCRs). Here we demonstrated that the cartilaginous fish, Dasyatis akajei (stingray) expresses five subtypes of MCR genes—mc1r to mc5r—as in the case of teleost and tetrapod species. This is the first evidence showing the presence of the full repertoire of melanocortin receptors in a single of cartilaginous fish. Expression of respective stingray mcr cDNAs in Chinese hamster ovary cells revealed that Des-acetyl-α-MSH exhibited cAMP-producing activity indistinguishable to ACTH(1–24) on MC1R and MC2R, while the activity of Des-acetyl-α-MSH on MC3R, MC4R, and MC5R were similar to or slightly greater than that of ACTH(1–24). Notably, in contrast to the other vertebrates, MC2R did not require coexpression with a melanocortin receptor-2 accessory protein 1 (mrap1) cDNA for functional expression. One of the roles of MC system resides in regulation of the pituitary-interrenal (PI) axis—a homologue of tetrapod pituitary-adrenal axis. In stingray, interrenal tissues were shown to express mc2r and mc5r as major MCR genes. These results established the presence of functional PI axis in stingray at the level of receptor molecule. While MC2R participates in adrenal functions together with MRAP1 in tetrapod species, the fact that sensitivity of MC5R to Des-acetyl-α-MSH and ACTH(1–24) were two order of magnitude higher than MC2R without coexpression with MRAP1 suggested that MC5R could play a more important role than MC2R to transmit signals conveyed by ACTH and MSHs if MRAP1 is really absent in the stingray

    Expression of genes for melanotropic peptides and their receptors for morphological color change in goldfish Carassius auratus

    No full text
    To evaluate the association of the melanotropic peptides and their receptors for morphological color change, we investigated the effects of changes in background color, between white and black, on xanthophore density in the scales and expression levels of genes for hormonal peptides and corresponding receptors (MCH-R2, MC1R, and MC5R) in goldfish (Carassius auratus). The xanthophore density in both dorsal and ventral scales increased after transfer from a white to black background. However, xanthophore density in dorsal scales increased after transfer from a black to white background, and that of ventral scales decreased after transfer from a black to black background, which served as the control. In the white-reared fish, melanin-concentrating hormone (mch) mRNA content in the brain was higher than that in black-reared fish, whereas proopiomelanocortin a (pomc-a) mRNA content in the pituitary was lower than that in the black-reared fish. Agouti-signaling protein (asp) mRNA was detected in the ventral skin but not in the dorsal skin. No difference was observed in the asp mRNA content between fish reared in white or black background, suggesting that ASP might not be associated with background color adaptation. In situ hybridization revealed that both mc1r and mc5r were expressed in the xanthophores in scales. The mRNA content of mc1r in scales did not always follow the background color change, whereas those of mc5r decreased in the white background and increased in the black background, suggesting that mc5r might be a major factor reinforcing the function of MSH in morphological color changes. White backgrounds increased mch mRNA content in the brain, but decreased mch-r2 mRNA content in the scales. These altered expression levels of melanotropin receptors might affect reactivity to melanotropins through long-term adaptation to background color.This study was supported by JSPS KAKENHI Grant Numbers JP24780192 and JP15K07586 to K.M. from the Japan Society for the Promotion of Science. JM C-R was funded by AGL2016-74857-C3-3-R from Ministry for Economy and Competitiveness Spain (MINECO).Peer reviewe

    Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors

    Get PDF
    This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs) related to research published in “Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish” (Takahashi et al., 2016) [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR. Keywords: Adrenocorticotropic hormone (ACTH), Dasyatis akajei, Melanocortin receptor (MCR), Melanocyte-stimulating hormone (MSH), Stingra
    corecore