6 research outputs found

    Inverse pH Gradient-Assay for Facile Characterization of Proton-Antiporters in <i>Xenopus</i> Oocytes

    No full text
    Xenopus oocytes represent one of the most versatile model systems for characterizing the properties of membrane transporters. However, for studying proton-coupled antiporters, the use of Xenopus oocytes has so far been limited to so-called injection-based transport assays. In such assays, where the compound is injected directly into the oocytes’ cytosol and transport is detected by monitoring substrate efflux, poor control over internal diffusion and concentration are incompatible with mechanistic characterizations. In this study, we present an inverse pH-gradient transport assay. Herein, an outward-facing proton gradient enables the characterization of proton antiporters via facile import-based transport assays. We describe two approaches for establishing sustained outward-facing proton gradients across the oocyte membrane, namely by applying alkaline external conditions or through surprisingly stable carbonyl cyanide m-chlorophenyl-hydrazone (CCCP)-mediated acidification of the cytosol. Previously, genetic evidence has shown that DTX18 from Arabidopsis thaliana is essential for the deposition of the hydroxycinnamic acid amide p-coumaroylagmatine (coumaroylagmatine) defence compound on the leaf surface. However, direct evidence for its ability to transport coumarol-agmatine has not been provided. Here, using Xenopus oocytes as expression hosts, we demonstrate DTX18’s ability to transport coumaroyl-agmatine via both injection-based and inverse pH-gradient transport assays. Notably, by showing that DTX18 is capable of accumulating its substrate against its concentration gradient, we showcase the compatibility of the latter with mechanistic investigations

    Artificial Fluorescent Glucosinolates (F-GSLs) Are Transported by the Glucosinolate Transporters GTR1/2/3

    No full text
    The glucosinolate transporters 1/2/3 (GTR1/2/3) from the Nitrate and Peptide transporter Family (NPF) play an essential role in the transport, accumulation, and distribution of the specialized plant metabolite glucosinolates. Due to representing both antinutritional and health-promoting compounds, there is increasing interest in characterizing GTRs from various plant species. We generated seven artificial glucosinolates (either aliphatic or benzenic) bearing different fluorophores (Fluorescein, BODIPY, Rhodamine, Dansylamide, and NBD) and investigated the ability of GTR1/2/3 from Arabidopsis thaliana to import the fluorescent glucosinolates (F-GSLs) into oocytes from Xenopus laevis. Five out of the seven F-GSLs synthesized were imported by at least one of the GTRs. GTR1 and GTR2 were able to import three F-GSLs actively above external concentration, while GTR3 imported only one actively. Competition assays indicate that the F-GSLs are transported by the same mechanism as non-tagged natural glucosinolates. The GTR-mediated F-GSL uptake is detected via a rapid and sensitive assay only requiring simple fluorescence measurements on a standard plate reader. This is highly useful in investigations of glucosinolate transport function and provides a critical prerequisite for elucidating the relationship between structure and function through high-throughput screening of GTR mutant libraries. The F-GSL themselves may also be suitable for future studies on glucosinolate transport in vivo

    Structural Insights into the Substrate Transport Mechanisms in GTR Transporters through Ensemble Docking

    No full text
    Glucosinolate transporters (GTRs) are part of the nitrate/peptide transporter (NPF) family, members of which also transport specialized secondary metabolites as substrates. Glucosinolates are defense compounds derived from amino acids. We selected 4-methylthiobutyl (4MTB) and indol-3-ylmethyl (I3M) glucosinolates to study how GTR1 from Arabidopsis thaliana transports these substrates in computational simulation approaches. The designed pipeline reported here includes massive docking of 4MTB and I3M in an ensemble of GTR1 conformations (in both inward and outward conformations) extracted from molecular dynamics simulations, followed by clustered and substrate–protein interactions profiling. The identified key residues were mutated, and their role in substrate transport was tested. We were able to identify key residues that integrate a major binding site of these substrates, which is critical for transport activity. In silico approaches employed here represent a breakthrough in the plant transportomics field, as the identification of key residues usually takes a long time if performed from a purely wet-lab experimental perspective. The inclusion of structural bioinformatics in the analyses of plant transporters significantly speeds up the knowledge-gaining process and optimizes valuable time and resources
    corecore