5 research outputs found

    From research to farm : ex ante evaluation of strategic deworming in pig finishing

    Get PDF
    This paper upgrades generic and partial information from parasitological research for farm-specific decision support, using two methods from managerial sciences: partial budgeting and frontier analysis. The analysis focuses on strategic deworming in pig finishing and assesses both effects on economic performance and nutrient efficiency. The application of partial budgeting and frontier analysis is based on a production-theoretical system analysis which is necessary to integrate parasitological research results to assess aggregate economic and environmental impacts. Results show that both statistically significant and insignificant parasitological research results have to be taken into account. Partial budgeting and frontier analysis appear to be complementary methods: partial budgeting yields more discriminatory and communicative results, while frontier methods provide additional diagnostics through exploring optimization possibilities and economic-environmental trade-offs. Strategic deworming results in a win-win effect on economic and environmental performances. Gross margin increases with 3 to 12 € per average present finisher per year, depending on the cyclic pig price conditions. The impact on the nutrient balance ranges from +0.2 to –0.5 kg nitrogen per average present finisher per year. The observed efficiency improvements are mainly technical and further economic and environmental optimizations can be achieved through input re-allocation. A user-friendly spreadsheet is provided to translate the generic experimental information to farm-specific conditions

    Follicle Development during Luteal Phase and Altrenogest Treatment in Pigs

    No full text
    Synchronization of the oestrous cycle of gilts using altrenogest treatment has been found to increase ovulation rate. The current experiment investigated if the increase in ovulation rate after altrenogest treatment is related to increased follicle size at the end of altrenogest treatment compared with late luteal phase follicles. Crossbred gilts (n = 15) received altrenogest during 18 days [20 mg Regumate (Janssen Animal Health, Beerse, Belgium)], starting 5¿7 days after onset of first oestrus. Control gilts (n = 15) did not receive altrenogest. At days 10¿12 of the oestrous cycle [i.e. in the presence of corpora lutea (CL)], average follicle development was 2.51 ± 0.20 mm (assessed with ultrasound) in altrenogest-treated gilts and 2.58 ± 0.16 mm in control gilts (p > 0.10). During the last days of altrenogest treatment (i.e. when CL had gone into regression), average follicle size had increased to 3.01 ± 0.31 mm (p <0.05). Subsequent ovulation rate was 16.6 ± 1.7 in altrenogest treated gilts and 15.1 ± 1.2 in control gilts (p <0.05). Altrenogest treatment resulted in increased follicle size after regression of the CL, showing that suppression of follicle growth by altrenogest alone is less severe than suppression by endogenous progesterone (either with or without altrenogest). Altrenogest treatment also resulted in a higher ovulation rate. However, it is unclear if the increased follicle size and higher ovulation rate after altrenogest treatment are causally related, as the relation between the two on an animal level was not significant
    corecore