21 research outputs found

    Speed pressure in conflict situations impedes inhibitory action control in Parkinson's disease

    No full text
    The current study investigated the effects of Parkinson's disease (PD) on the ability to resolve conflicts when performance emphasized speed vs. response accuracy. PD patients and healthy controls (HC) completed a Simon task, and a subset of participants provided movement-related potential (MRP) data to investigate motor cortex activation and inhibition associated with conflict resolution. Both groups adjusted performance strategically with speed or accuracy instructions. The groups experienced similar susceptibility to making fast errors in conflict trials, but PD patients were less proficient compared to HC at suppressing incorrect responses, especially under speed pressure. Analysis of MRPs showed attenuated inhibition of the motor cortex controlling the conflicting response in PD patients compared to HC. These results confirm the detrimental effects of PD on inhibitory control mechanisms with speed pressure and also suggest that a downstream effect of inhibitory dysfunction in PD might be due to diminished inhibition of the motor cortex

    Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors

    Get PDF
    BACKGROUND: Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. METHODS: We used the stop-signal task in a cohort of patients with and without active symptoms of ICD to evaluate motor-impulsivity. Of those with PD, 12 were diagnosed with ICD symptoms (PD-ICD) and were assessed before clinical reduction of dopamine agonist medication; 12 were without symptoms of ICD [PD-control] and taking equivalent dosages of dopamine agonist. Levodopa, if present, was maintained in both settings. Groups were similar in age, duration, and severity of motor symptoms, levodopa co-therapy, and total levodopa daily dose. All were tested in the dopamine agonist medicated and acutely withdrawn (24 h) state, in a counterbalanced manner. Primary outcome measures were mean reaction time to correct go trials (go reaction time), and mean stop-signal reaction time (SSRT). RESULTS: ICD patients produce faster SSRT than both Healthy Controls, and PD-Controls. Faster SSRT in ICD patients is apparent in both dopamine agonist medication states. Also, we show unique dopamine medication effects on Go Reaction time (GoRT). In dopamine agonist monotherapy patients, dopamine agonist administration speeds GoRT. Conversely, in those with levodopa co-therapy, dopamine agonist administration slows. DISCUSSION: PD patients with active ICD symptoms are significantly faster at stopping initiated motor actions, and this is not altered by acute dopamine agonist withdrawal. In addition, the effect of dopamine agonist on GoRT is strongly influenced by the presence or absence of levodopa, even though levodopa co-therapy does not appear to influence SSRT. We discuss these findings as they pertain to the multifaceted definition of 'impulsivity,' the lack of evidence for motor-impulsivity in PD-ICD, and dopamine effects on motor-control in PD

    Impaired inhibition of prepotent motor actions in patients with Tourette syndrome

    No full text
    BACKGROUND: Evidence that tic behaviour in individuals with Tourette syndrome reflects difficulties inhibiting prepotent motor actions is mixed. Response conflict tasks produce sensitive measures of response interference from prepotent motor impulses and the proficiency of inhibiting these impulses as an act of cognitive control. We tested the hypothesis that individuals with Tourette syndrome show a deficit in inhibiting prepotent motor actions. METHODS: Healthy controls and older adolescents/adults with persistent Tourette syndrome without a history of obsessive–compulsive disorder or attention-deficit/hyperactivity disorder and presenting with stable mood functioning (i.e., no history of well-treated anxiety or depression) participated in this study. They performed a Simon task that induced conflict between prepotent actions and goal-directed actions. A novel theoretical framework distinguished group differences in acting impulsively (i.e., fast motor errors) from the proficiency of inhibiting interference by prepotent actions (i.e., slope of interference reduction). RESULTS: We included 27 controls and 28 individuals with Tourette syndrome in our study. Both groups showed similar susceptibility to making fast, impulsive motor errors (Tourette syndrome 26% v. control 23%; p = 0.10). The slope (m) reduction of the interference effect was significantly less pronounced among participants with Tourette syndrome than controls (Tourette syndrome: m = −0.07 v. control: m = −0.23; p = 0.022), consistent with deficient inhibitory control over prepotent actions in Tourette syndrome. LIMITATIONS: This study does not address directly the role of psychiatric comorbidities and medication effects on inhibitory control over impulsive actions in individuals with Tourette syndrome. CONCLUSION: The results offer empirical evidence for deficient inhibitory control over prepotent motor actions in individuals with persistent Tourette syndrome with minimal to absent psychiatric comorbidities. These findings also suggest that the frontal–basal ganglia circuits involved in suppressing unwanted motor actions may underlie deficient inhibitory control abilities in individuals with Tourette syndrome

    Dopamine and temporal attention: An attentional blink study in Parkinson's disease patients on and off medication

    Get PDF
    The current study aimed to shed more light on the role of dopamine in temporal attention. To this end, we pharmacologically manipulated dopamine levels in a large sample of Parkinson's disease patients (n=63) while they performed an attentional blink (AB) task in which they had to identify two targets (T1 and T2) presented in close temporal proximity among distractors. We specifically examined 1) differences in the magnitude of the AB between unmedicated Parkinson patients, who have depleted levels of striatal dopamine, and healthy controls, and 2) effects of two dopaminergic medications (l-DOPA and dopamine agonists) on the AB in the Parkinson patients at the group level and as a function of individual baseline performance. In line with the notion that relatively low levels of striatal dopamine may impair target detection in general, Parkinson patients OFF medications displayed overall poor target perception compared to healthy controls. Moreover, as predicted, effects of dopaminergic medication on AB performance critically depended on individual baseline AB size, although this effect was only observed for l-DOPA. l-DOPA generally decreased the size of the AB in patients with a large baseline AB (i.e., OFF medications), while l-DOPA generally increased the AB in patients with a small baseline AB. These findings may support a role for dopamine in the AB and temporal attention, more generally and corroborate the notion that there is an optimum dopamine level for cognitive function. They also emphasize the need for more studies that examine the separate effects of DA agonists and l-DOPA on cognitive functioning
    corecore