14 research outputs found

    Molecular characterization of immunoinhibitory factors PD-1/PD-L1 in chickens infected with Marek’s disease virus

    No full text
    Abstract Background An immunoinhibitory receptor, programmed death-1 (PD-1), and its ligand, programmed death-ligand 1 (PD-L1), are involved in immune evasion mechanisms for several pathogens causing chronic infections and for neoplastic diseases. However, little has been reported for the functions of these molecules in chickens. Thus, in this study, their expressions and roles were analyzed in chickens infected with Marek’s disease virus (MDV), which induces immunosuppression in infected chickens. Results A chicken T cell line, Lee1, which constitutively produces IFN-γ was co-cultured with DF-1 cells, which is a spontaneously immortalized chicken fibroblast cell line, transiently expressing PD-L1, and the IFN-γ expression level was analyzed in the cell line by real-time RT-PCR. The IFN-γ expression was significantly decreased in Lee1 cells co-cultured with DF-1 cells expressing PD-L1. The expression level of PD-1 was increased in chickens at the early cytolytic phase of the MDV infection, while the PD-L1 expression level was increased at the latent phase. In addition, the expression levels of PD-1 and PD-L1 were increased at tumor lesions found in MDV-challenged chickens. The expressions levels of PD-1 and PD-L1 were also increased in the spleens and tumors derived from MDV-infected chickens in the field. Conclusions We demonstrated that the chicken PD-1/PD-L1 pathway has immunoinhibitory functions, and PD-1 may be involved in MD pathogenesis at the early cytolytic phase of the MDV infection, whereas PD-L1 could contribute to the establishment and maintenance of MDV latency. We also observed the increased expressions of PD-1 and PD-L1 in tumors from MDV-infected chickens, suggesting that tumor cells transformed by MDV highly express PD-1 and PD-L1 and thereby could evade from immune responses of the host.</p

    Comprehensive Genomic Profiling Reveals Clinical Associations in Response to Immune Therapy in Head and Neck Cancer

    No full text
    Comprehensive genomic profiling (CGP) provides information regarding cancer-related genetic aberrations. However, its clinical utility in recurrent/metastatic head and neck cancer (R/M HNC) remains unknown. Additionally, predictive biomarkers for immune checkpoint inhibitors (ICIs) should be fully elucidated because of their low response rate. Here, we analyzed the clinical utility of CGP and identified predictive biomarkers that respond to ICIs in R/M HNC. We evaluated over 1100 cases of HNC using the nationwide genetic clinical database established by the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) and 54 cases in an institution-based study. The C-CAT database revealed that 23% of the cases were candidates for clinical trials, and 5% received biomarker-matched therapy, including NTRK fusion. Our institution-based study showed that 9% of SCC cases and 25% of salivary gland cancer cases received targeted agents. In SCC cases, the tumor mutational burden (TMB) high (&ge;10 Mut/Mb) group showed long-term survival (&gt;2 years) in response to ICI therapy, whereas the PD-L1 combined positive score showed no significant difference in progression-free survival. In multivariate analysis, CCND1 amplification was associated with a lower response to ICIs. Our results indicate that CGP may be useful in identifying prognostic biomarkers for immunotherapy in patients with HNC
    corecore