18 research outputs found

    Regional comparison of absolute gravimeters SIM.M.G-K1 key comparison

    Get PDF
    Twelve absolute gravimeters were compared during the regional Key Comparison SIM.M.G-K1 of absolute gravimeters. The four gravimeters were from different NMIs and DIs. The comparison was linked to the CCM.G-K2 through EURAMET.M.G-K2 via the DI gravimeter FG5X-216. Overall, the results and uncertainties indicate an excellent agreement among the gravimeters, with a standard deviation of the gravimeters' DoEs better than 1.3 ÎŒGal. In the case of the official solution, all the gravimeters are in equivalence well within the declared uncertainties. == Main text To reach the main text of this paper, click on Final Report [http://www.bipm.org/utils/common/pdf/final_reports/M/G-K1/SIM.M.G-K1.pdf] . Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/ [http://kcdb.bipm.org/] . The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA)

    Reactions of Thiiranes and a Thietane with a High Valent Metal Chloride

    No full text

    Deep borehole disposal of high-level radioactive waste.

    No full text
    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63)
    corecore