17 research outputs found

    Epithelial–Mesenchymal Transition in Liver Fluke-Induced Cholangiocarcinoma

    No full text
    Cholangiocarcinoma (CCA) is the second most common type of hepatic cancer. In east and southeast Asia, intrahepatic CCA is caused predominantly by infection of Opisthorchis viverrini and Clonorchis sinensis, two species of parasitic liver flukes. In this review, we present molecular evidence that liver fluke-associated CCAs have enhanced features of epithelial–mesenchymal transition (EMT) in bile duct epithelial cells (cholangiocytes) and that some of those features are associated with mis-regulation at the epigenetic level. We hypothesize that both direct and indirect mechanisms underlie parasitic infection-induced EMT in CCA

    Specificity of immunoblotting analyses in eosinophilic meningitis

    No full text
    Angiostrongylus cantonensis and Gnathostoma spinigerum are the two most common causative parasites of eosinophilic meningitis (EOM). Serological tests are helpful tools for confirming the identity of the pathogen. Recent reports determined the specificity of such tests by using normal healthy controls. There have been limited studies done to rule out the cross-reactivity between these two causative parasites of EOM. This study aims to assess the specificity of the serological test in EOM by using each condition as a control for the other. Thirty-three patients with a diagnosis of EOM were enrolled. Sera from 22 patients with a positive 29-kDa antigenic diagnostic band of A. cantonensis were tested for the 21 and 24-kDa antigenic bands of G. spinigerum. Similarly, sera of 11 gnathostomiasis patients were tested for the 29-kDa diagnostic band for A. cantonensis. Only one patient in the angiostrongyliasis group had a positive result for the 21 and 24-kDa antigenic bands of G. spinigerum, while no gnathostomiasis patients showed a positive result for the 29-kDa antigenic band of A. cantonensis. The specificity of the 21 and 24-kDa antigenic bands for gnathostomiasis and the 29-kDa antigenic band for A. cantonensis was 95.5% and 100%, respectively. The antigenic bands for the diagnosis of gnathostomiasis and angiostrongyliasis in EOM were highly specific

    Suppression of trophoblast cell surface antigen 2 enhances proliferation and migration in liver fluke-associated cholangiocarcinoma

    No full text
    Background and aim. Trophoblast cell surface antigen 2 (TROP2) or tumor-associated calcium signal transducer 2 (TACSTD2) is a 36-kDa type I transmembrane glycoprotein and exerts dual functions as an oncogene and tumor suppressor in cancer cells. In this study, we investigated the expression and functions of TROP2 in liver fluke-associated cholangiocarcinoma (CCA).Material and methods. TROP2 expression in 85 CCA tissues was detected by using immunohistochemistry. The methylation status of TROP2 promoter was studied in 15 matched pairs of normal and CCA formalin fixed paraffin embedded (FFPE) tissues using the bisulfite genomic sequencing (BGS) method. The functions of TROP2 on cancer cell behavior were investigated using siRNA in CCA cell lines. Proliferation, migration and invasion assays were performed. A PCR array was used to evaluate the impact of TROP2 knockdown on the gene expression profiles.Results. TROP2 was highly expressed in all normal bile duct epithelia, but significantly down-regulated in CCA cells. Sixty percent of CCA revealed promoter hypermethylation compared to the corresponding adjacent normal tissues. TROP2 knockdown significantly enhanced the proliferation and migration in CCA cell lines, and altered the expressions of MARCK, EMP1and FILIP1L.Conclusion. We provide new evidence that TROP2 is epigenetically down-regulated and operates as a negative regulator of cell proliferation and migration in liver fluke-associated CCA

    Peripheral eosinophilia as an indicator of meningitic angiostrongyliasis in exposed individuals

    No full text
    The diagnosis of meningitic angiostrongyliasis (MA) is based on clinical criteria. A lumbar puncture is used as a diagnostic tool, but it is an invasive procedure. The blood eosinophil levels are also assessed and used in the diagnosis of this disease. We enrolled 47 patients with serologically proven MA and 131 controls with intestinal parasite infections. An absolute eosinophil count model was found to be the best marker for MA. An eosinophil count of more than 798 cells led to sensitivity, specificity, positive predictive and negative predictive values of 76.6%, 80.2%, 58.1% and 90.5%, respectively. These data support the use of testing for high blood eosinophil levels as a diagnostic tool for MA in individuals that are at risk for this disease
    corecore