3 research outputs found

    The MEDEA childhood asthma study design for mitigation of desert dust health effects: implementation of novel methods for assessment of air pollution exposure and lessons learned

    Get PDF
    Background: Desert dust events in Mediterranean countries, originating mostly from the Sahara and Arabian deserts, have been linked to climate change and are associated with significant increase in mortality and hospital admissions from respiratory causes. The MEDEA clinical intervention study in children with asthma is funded by EU LIFE+ program to evaluate the efficacy of recommendations aiming to reduce exposure to desert dust and related health effects. Methods: This paper describes the design, methods, and challenges of the MEDEA childhood asthma study, which is performed in two highly exposed regions of the Eastern Mediterranean: Cyprus and Greece-Crete. Eligible children are recruited using screening surveys performed at primary schools and are randomized to three parallel intervention groups: a) no intervention for desert dust events, b) interventions for outdoor exposure reduction, and c) interventions for both outdoor and indoor exposure reduction. At baseline visits, participants are enrolled on MEDena® Health-Hub, which communicates, alerts and provides exposure reduction recommendations in anticipation of desert dust events. MEDEA employs novel environmental epidemiology and telemedicine methods including wearable GPS, actigraphy, health parameters sensors as well as indoor and outdoor air pollution samplers to assess study participants’ compliance to recommendations, air pollutant exposures in homes and schools, and disease related clinical outcomes. Discussion: The MEDEA study evaluates, for the first time, interventions aiming to reduce desert dust exposure and implement novel telemedicine methods in assessing clinical outcomes and personal compliance to recommendations. In Cyprus and Crete, during the first study period (February–May 2019), a total of 91 children participated in the trial while for the second study period (February–May 2020), another 120 children completed data collection. Recruitment for the third study period (February–May 2021) is underway. In this paper, we also present the unique challenges faced during the implementation of novel methodologies to reduce air pollution exposure in children. Engagement of families of asthmatic children, schools and local communities, is critical. Successful study completion will provide the knowledge for informed decision-making both at national and international level for mitigating the health effects of desert dust events in South-Eastern Europe. Trial registration: ClinicalTrials.gov: NCT03503812, April 20, 2018

    MEDEA randomised intervention study protocol in Cyprus, Greece and Israel for mitigation of desert dust health effects in adults with atrial fibrillation

    Get PDF
    Introduction Mediterranean countries experience frequent desert dust storm (DDS) events originating from neighbouring Sahara and Arabian deserts, which are associated with significant increase in mortality and hospital admissions, mostly from cardiovascular and respiratory diseases. Short-term exposure to ambient air pollution is considered as a trigger for symptomatic exacerbations of pre-existing paroxysmal atrial fibrillation (AF) and other types of heart arrhythmia. The Mitigating the Health Effects of Desert Dust Storms Using Exposure-Reduction Approaches clinical randomised intervention study in adults with AF is funded by EU LIFE+programme to evaluate the efficacy of recommendations aiming to reduce exposure to desert dust and related heart arrhythmia effects.Methods and analysis The study is performed in three heavily exposed to desert dust regions of the Eastern Mediterranean: Cyprus, Israel and Crete-Greece. Adults with paroxysmal AF and implanted pacemaker are recruited and randomised to three parallel groups: (a) no intervention, (b) interventions to reduce outdoor exposure to desert dust, (c) interventions to reduce both outdoor and indoor exposure to particulate matter during desert dust episodes. Eligible participants are enrolled on a web-based platform which communicates, alerts and makes exposure reduction recommendations during DDS events. Exposure changes are assessed by novel tools (smartwatches with Global Positioning System and physical activity sensors, air pollution samplers assessing air quality inside and outside participant’s homes, etc). Clinical outcomes include the AF burden expressed as the percentage of time with paroxysmal AF over the total study period, the incidence of ventricular arrhythmia episodes as recorded by the participants’ pacemakers or cardioverters/defibrillators and the disease-specific Atrial Fibrillation Effect on QualiTy-of-Life questionnaire.Ethics and dissemination Local bioethics’ authorities approved the study at all sites, according to national legislations (Cyprus: National Bioethics Committee, Data Protection Commissioner and Ministry of Health; Greece, Scientific Committee and Governing Board of the University General Hospital of Heraklion; Israel: Institutional Review Board (‘Helsinki committee’) of the Soroka University Medical Center). The findings will be publicised in peer-reviewed scientific journals, in international conferences and in professional websites and newsletters. A summary of the results and participants’ interviews will be included in a documentary in English, Greek and Hebrew.Trial registration number ClinicalTrials.gov Identifier; NCT03503812
    corecore