60 research outputs found
Comprehensive analysis of the amino acid metabolism-related gene signature for prognosis, tumor immune microenvironment, and candidate drugs in hepatocellular carcinoma
IntroductionMetabolic rewiring satisfies increased nutritional demands and modulates many oncogenic processes in tumors. Amino acid metabolism is abnormal in many malignancies. Metabolic reprogramming of amino acids not only plays a crucial role in sustaining tumor cell proliferation but also influences the tumor immune microenvironment. Herein, the aim of our study was to elucidate the metabolic signature of amino acids in hepatocellular carcinoma (HCC).MethodsTranscriptome profiles of HCC were obtained from the TCGA and ICGC databases. Based on the expression of amino acid metabolism-related genes (AAMRGs), we clustered the HCC samples into two molecular subtypes using the non-negative matrix factorization algorithm. Then, we constructed the amino acid metabolism-related gene signature (AAMRGS) by Cox regression and LASSO regression. Afterward, the clinical significance of the AAMRGS was evaluated. Additionally, we comprehensively analyzed the differences in mutational profiles, immune cell infiltration, immune checkpoint expression, and drug sensitivity between different risk subgroups. Furthermore, we examined three key gene expressions in liver cancer cells by quantitative real-time PCR and conducted the CCK8 assay to evaluate the influence of two chemotherapy drugs on different liver cancer cells.ResultsA total of 81 differentially expressed AAMRGs were screened between the two molecular subtypes, and these AAMRGs were involved in regulating amino acid metabolism. The AAMRGS containing GLS, IYD, and NQO1 had a high value for prognosis prediction in HCC patients. Besides this, the two AAMRGS subgroups had different genetic mutation probabilities. More importantly, the immunosuppressive cells were more enriched in the AAMRGS-high group. The expression level of inhibitory immune checkpoints was also higher in patients with high AAMRGS scores. Additionally, the two AAMRGS subgroups showed different susceptibility to chemotherapeutic and targeted drugs. In vitro experiments showed that gemcitabine significantly reduced the proliferative capacity of SNU449 cells, and rapamycin remarkedly inhibited Huh7 proliferation. The five HCC cells displayed different mRNA expression levels of GLS, IYD, and NQO1.ConclusionsOur study explored the features of amino acid metabolism in HCC and identified the novel AAMRGS to predict the prognosis, immune microenvironment, and drug sensitivity of HCC patients. These findings might help to guide personalized treatment and improve the clinical outcomes of HCC
MicroRNA-130b Promotes Cell Aggressiveness by Inhibiting Peroxisome Proliferator-Activated Receptor Gamma in Human Hepatocellular Carcinoma
MircroRNA-130b (miR-130b) is proposed as a novel tumor-related miRNA and has been found to be significantly dysregulated in tumors. In this study, the expression level of miR-130b was found to be obviously higher in hepatocellular carcinoma (HCC) tissues than that in nontumor tissues. Further, miR-130b was expressed at significantly higher levels in aggressive and recurrent tumor tissues. Clinical analysis indicated that high-expression of miR-130b was prominently correlated with venous infiltration, high Edmondson-Steiner grading and advanced tumor-node-metastasis (TNM) tumor stage in HCC. Elevated miR-130b expression was observed in all HCC cell lines (HepG2, SMMC-7721, Huh7, Hep3B and MHCC97H) as compared with that in a nontransformed hepatic cell line (LO2). Furthermore, an inverse correlation between miR-130b and E-cadherin and a positive correlation between miR-130b and Vimentin were observed in HCC tissues. Down-regulation of miR-130b expression reduced invasion and migration in both Hep3B and MHCC97H cells. Peroxisome proliferator-activated receptor gamma (PPAR-γ) was inversely correlated with miR-130b expression in HCC tissues. In addition, down-regulation of miR-130b restored PPAR-γ expression and subsequently suppressed epithelial-mesenchymal transition (EMT) in HCC cells. We identified PPARγ as a direct target of miR-130b in HCC in vitro. Notably, PPAR-γ knockdown abolished down-regulation of miR-130b-inhibited EMT in MHCC97H cells. In conclusion, miR-130b may promote HCC cell migration and invasion by inhibiting PPAR-γ and subsequently inducing EMT
MRC2 Expression Correlates with TGFβ1 and Survival in Hepatocellular Carcinoma
MRC2 (Mannose Receptor C Type 2) is a constitutively recycling endocytic receptor belonging to the mannose receptor family, which has been found to be closely involved with cancer metastasis. This study attempted to determine MRC2 expression on hepatocellular carcinoma (HCC) and its significance on postsurgical prognosis of HCCs. The expression of both MRC2 and transforming growth factor (TGFβ1) was detected in tumor tissues and adjacent liver tissues from 96 HCCs by immunohistochemistry staining, and it was found that MRC2 expression in HCC tissues was significantly higher than in adjacent liver tissues. HCCs with higher MRC2 expression had worse prognosis after liver resection. Univariate analysis showed that advanced TNM staging of HCC, higher Edmonson-Steiner classification, intrahepatic metastases, portal vein invasion, higher MRC2 and higher TGFβ1 were the poor prognostic factors. Furthermore, multivariate analysis revealed that intrahepatic metastases, higher MRC2 and higher TGFβ1 were the independent prognostic factors. TGFβ1 treatment up-regulated MRC2 expression, cell migration and invasion of Huh7 cells notably. In addition, knockdown of MRC2 repressed the effect of TGFβ1 on cell migration and invasion. These data suggest that MRC2 overexpression predicts poor prognosis of HCCs after liver resection and MRC2 potentially contributed to TGFβ1-driven up-regulation of cell migration and invasion in HCC
Caveolin-1 Is Up-Regulated by GLI1 and Contributes to GLI1-Driven EMT in Hepatocellular Carcinoma
<div><p>Caveolin-1 (Cav-1) has been recently identified to be over-expressed in hepatocellular carcinoma (HCC) and promote HCC cell motility and invasion ability via inducing epithelial-mesenchymal transition (EMT). However, the mechanism of aberrant overexpression of Cav-1 remains vague. Here, we observed that Cav-1 expression was positively associated with GLI1 expression in HCC tissues. Forced expression of GLI1 up-regulated Cav-1 in Huh7 cells, while knockdown of GLI1 decreased expression of Cav-1 in SNU449 cells. Additionally, silencing Cav-1 abolished GLI1-induced EMT of Huh7 cells. The correlation between GLI1 and Cav-1 was confirmed in tumor specimens from HCC patients and Cav-1 was found to be associated with poor prognosis after hepatic resection. The relationship between protein expression of GLI1 and Cav-1 was also established in HCC xenografts of nude mice. These results suggest that GLI1 may be attributed to Cav-1 up-regulation which plays an important role in GLI1-driven EMT phenotype in HCC.</p></div
Recombinant human adenovirus-p53 injection induced apoptosis in hepatocellular carcinoma cell lines mediated by p53-Fbxw7 pathway, which controls c-Myc and cyclin E.
F-box and WD repeat domain-containing 7 (Fbxw7/hAgo/hCdc4/Fbw7) is a p53-dependent tumor suppressor and leads to ubiquitination-mediated suppression of several oncoproteins including c-Myc, cyclin E, Notch, c-Jun and others. Our previous study has indicated that low expression of Fbxw7 was negatively correlated with c-Myc, cyclin E and mutant-p53 in hepatocellular carcinoma (HCC) tissues. But the role and mechanisms of Fbxw7 in HCC are still unknown. Here, we investigated the function of Fbxw7 in HCC cell lines and the anti-tumor activity of recombinant human adenovirus-p53 injection (rAd-p53, Gendicine) administration in vitro and in vivo. Fbxw7-specific siRNA enhanced expression of c-Myc and cyclin E proteins and increased proliferation in cell culture. rAd-p53 inhibited tumor cell growth with Fbxw7 upregulation and c-Myc and cyclin E downregulation in vitro and a murine HCC model. This effect could be partially reverted using Fbxw7-specific siRNA. Here, we suggest that the activation of Fbxw7 by adenoviral delivery of p53 leads to increased proteasomal degradation of c-Myc and cyclin E enabling growth arrest and apoptosis. Addressing this pathway, we identified that rAd-p53 could be a potential therapeutic agent for HCC
GLI1 was found to promote growth of Huh7 xenografts and result in more Cav-1 expression and EMT phenotype in Huh7 xenograft tissues.
<p>(A) The size of xenografts from Huh7 GLI1 group was significantly larger than one from Huh7 Vector group (P = 0.002); (B) The representative IHC staining of Cav-1 in xenografts from both Huh7 GLI1 group (a) and Huh7 Vector group (b). Cav-1 protein was detected in both cell membrane (as labelled by a black arrow) and cytoplasm (as labelled by a white arrow). Cav-1 expression in xenografts from Huh7 GLI1 group was apparently more than one in xenografts from Huh7 Vector group; (C) The representative IHC staining of E-cadherin in xenografts from both Huh7 GLI1 group (a) and Huh7 Vector group (b). E-cadherin protein located mainly in cell membrane, as labelled by black arrows. There were less E-cadherin expression in xenograft tissues from Huh7 GLI1 group than ones from Huh7 Vector group; (D) The representative IHC staining of N-cadherin in xenografts from both Huh7 GLI1 group (a) and Huh7 Vector group (b). N-cadherin expression expressing basically in cytoplasm (labelled by white arrows) was increased clearly in xenograft parenchymal tissues from Huh7 GLI1 group than ones from Huh7 Vector group. Cytoplasmic N-cadherin expression was also found in xenograft mesenchymal tissues from both groups, as labelled by black arrows.</p
OTUD5 promotes the growth of hepatocellular carcinoma by deubiquitinating and stabilizing SLC38A1
Abstract Background Deubiquitinating enzymes (DUBs) cleave ubiquitin on substrate molecules to maintain protein stability. DUBs reportedly participate in the tumorigenesis and tumour progression of hepatocellular carcinoma (HCC). OTU deubiquitinase 5 (OTUD5), a DUB family member, has been recognized as a critical regulator in bladder cancer, breast cancer and HCC. However, the expression and biological function of OTUD5 in HCC are still controversial. Results We determined that the expression of OTUD5 was significantly upregulated in HCC tissues. High levels of OTUD5 were also detected in most HCC cell lines. TCGA data analysis demonstrated that high OTUD5 expression indicated poorer overall survival in HCC patients. OTUD5 silencing prominently suppressed HCC cell proliferation, while its overexpression markedly enhanced the proliferation of HCC cells. Mass spectrometry analysis revealed solute carrier family 38 member 1 (SLC38A1) as a candidate downstream target protein of OTUD5. Coimmunoprecipitation analysis confirmed the interaction between OTUD5 and SLC38A1. OTUD5 knockdown reduced and OTUD5 overexpression increased SLC38A1 protein levels in HCC cells. However, OTUD5 alteration had no effect on SLC38A1 mRNA expression. OTUD5 maintained SLC38A1 stability by preventing its ubiquitin-mediated proteasomal degradation. SLC38A1 silencing prominently attenuated the OTUD5-induced increase in HCC cell proliferation. Finally, OTUD5 knockdown markedly suppressed the growth of HCC cells in vivo. Conclusions OTUD5 is an oncogene in HCC. OTUD5 contributes to HCC cell proliferation by deubiquitinating and stabilizing SLC38A1. These results may provide a theoretical basis for the development of new anti-HCC drugs
- …