19 research outputs found

    Comprehensive analysis of the amino acid metabolism-related gene signature for prognosis, tumor immune microenvironment, and candidate drugs in hepatocellular carcinoma

    Get PDF
    IntroductionMetabolic rewiring satisfies increased nutritional demands and modulates many oncogenic processes in tumors. Amino acid metabolism is abnormal in many malignancies. Metabolic reprogramming of amino acids not only plays a crucial role in sustaining tumor cell proliferation but also influences the tumor immune microenvironment. Herein, the aim of our study was to elucidate the metabolic signature of amino acids in hepatocellular carcinoma (HCC).MethodsTranscriptome profiles of HCC were obtained from the TCGA and ICGC databases. Based on the expression of amino acid metabolism-related genes (AAMRGs), we clustered the HCC samples into two molecular subtypes using the non-negative matrix factorization algorithm. Then, we constructed the amino acid metabolism-related gene signature (AAMRGS) by Cox regression and LASSO regression. Afterward, the clinical significance of the AAMRGS was evaluated. Additionally, we comprehensively analyzed the differences in mutational profiles, immune cell infiltration, immune checkpoint expression, and drug sensitivity between different risk subgroups. Furthermore, we examined three key gene expressions in liver cancer cells by quantitative real-time PCR and conducted the CCK8 assay to evaluate the influence of two chemotherapy drugs on different liver cancer cells.ResultsA total of 81 differentially expressed AAMRGs were screened between the two molecular subtypes, and these AAMRGs were involved in regulating amino acid metabolism. The AAMRGS containing GLS, IYD, and NQO1 had a high value for prognosis prediction in HCC patients. Besides this, the two AAMRGS subgroups had different genetic mutation probabilities. More importantly, the immunosuppressive cells were more enriched in the AAMRGS-high group. The expression level of inhibitory immune checkpoints was also higher in patients with high AAMRGS scores. Additionally, the two AAMRGS subgroups showed different susceptibility to chemotherapeutic and targeted drugs. In vitro experiments showed that gemcitabine significantly reduced the proliferative capacity of SNU449 cells, and rapamycin remarkedly inhibited Huh7 proliferation. The five HCC cells displayed different mRNA expression levels of GLS, IYD, and NQO1.ConclusionsOur study explored the features of amino acid metabolism in HCC and identified the novel AAMRGS to predict the prognosis, immune microenvironment, and drug sensitivity of HCC patients. These findings might help to guide personalized treatment and improve the clinical outcomes of HCC

    Advances of MnO2 nanomaterials as novel agonists for the development of cGAS-STING-mediated therapeutics

    Get PDF
    As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms

    The regulation of three new members of the cytochrome P450 CYP6 family and their promoters in the cotton aphid Aphis gossypii by plant allelochemicals

    Get PDF
    BACKGROUND: The expression of P450 genes in insects can be induced by plant allelochemicals. To understand the induction mechanisms, we measured the expression profiles of three P450 genes and their promoter activities under the induction of plant allelochemicals. RESULTS: The inducible expression of CYP6CY19 was the highest among three genes, followed by those of CYP6CY22 and CYP6DA1. The regions from −687 to +586bp of CYP6DA1, from−666 to +140bp of CYP6CY19 and from −530 to +218bp of CYP6CY22 were essential for basal transcriptional activity. The cis-elements for plant allelochemicals induction were identified between −193 and +56bp of CYP6DA1, between −157 and +140bp of CYP6CY19 and between −108 and +218bp of CYP6CY22. These promoter regions were found to contain a potential arylhydrocarbon receptor element binding site with a conservative sequence motif 5′-C/TAC/ANCA/CA-3′. All these four plant allelochemicals were able to induce the expression of these P450 genes. Tannic acid had a better inductive effect than other three plant allelochemicals. CONCLUSIONS: Our study identified the plant allelochemical responsive cis-elements. This provides further research targets aimed at understanding the regulatory mechanisms of P450 genes expression and their interactions with plant allelochemicals in insect pests

    UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover

    No full text
    UDP-glycosyltransferases (UGTs) are major phase II detoxification enzymes that catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules and play very important roles in the biotransformation of various endogenous and exogenous compounds. Our previous studies demonstrated that UGTs participated in the detoxification of insecticides in Aphis gossypii. However, the potential roles of UGTs in A. gossypii resistance to sulfoxaflor are still unclear. In this study, two inhibitors of UGT enzymes, sulfinpyrazone and 5-nitrouracil, significantly increased the toxicity of sulfoxaflor to a resistant strain of A. gossypii, whereas there were no synergistic effects in the susceptible strain. Based on the transcriptome sequencing results, the expression levels of 15 UGTs were analyzed by quantitative real-time PCR, and we found that seven UGT genes were highly over-expressed in a sulfoxaflor-resistant strain compared to the susceptible strain, including UGT344B4, UGT344C5, UGT344A11, UGT344A14, and UGT344L2. Further suppressing the expression of UGT344B4, UGT344C5, and UGT344A11 by RNA interference significantly increased the sensitivity of resistant aphids to sulfoxaflor, indicating that the overexpression of UGT genes is potentially associated with sulfoxaflor resistance. These results could provide valuable information for further understanding the mechanisms of insecticide resistance

    Toxicity and sublethal effects of two plant allelochemicals on the demographical traits of cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae).

    No full text
    Plant allelochemicals are a group of secondary metabolites produced by plants to defend against herbivore. The mortality of two plant allelochemicals (tannic acid and gossypol) on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), were investigated using feeding assays and the sublethal effects were evaluated using the age-stage, two-sex life table approach. Tannic acid and gossypol have deleterious effects on A. gossypii, and as the concentrations increased, the mortality of cotton aphid increased. The life history traits of A. gossypii including the developmental duration of each nymph stage, the longevity, oviposition days, total preadult survival rate and adult pre-oviposition period were not significantly affected by sublethal concentration of tannic acid (20 mg/L) and gossypol (50 mg/L), while the population parameters (r, λ and R0) were significantly affected by these two plant allelochemicals. Furthermore, tannic acid can increase the pre-adult duration time and TPOP but reduce the fecundity of A. gossypii significantly compared to the control and gossypol treatment groups. These results are helpful for comprehensively understanding the effects of plant allelochemicals on A. gossypii

    Sublethal effects of acetamiprid and afidopyropen on Harmonia axyridis: insights from transcriptomics analysis

    No full text
    Evaluating the sublethal effects of insecticide is crucial for protecting and utilizing natural enemies. In this study, we determined the sublethal effects of acetamiprid and afidopyropen on Harmonia axyridis (Pallas) and explored the potential molecular mechanisms underlying these effects through transcriptomics analysis. The results showed that sublethal concentrations of acetamiprid significantly reduced the adult fecundity and longevity of F0 H. axyridis and decreased the survival time and survival rate of the F1 generation. Sublethal concentrations of afidopyropen prolonged the developmental time of 4th instar larvae in the F0 generation. Additionally, acetamiprid and afidopyropen treatments significantly decreased the predation of H. axyridis. Furthermore, transcriptome sequencing analysis revealed that several P450 and UGT genes expressed differently when H. axyridis were exposed to sublethal concentrations of acetamiprid and afidopyropen, suggesting that the differential expression of detoxifying genes might be involved in the response and detoxification metabolism of acetamiprid and afidopyropen in H. axyridis. Our findings demonstrate that sublethal concentrations of acetamiprid adversely influences the development and predation of H. axyridis, while afidopyropen has limited effects on H. axyridis. These results are helpful for protecting and utilizing natural enemies and guiding the scientific use of pesticides in the field

    Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii

    No full text
    Abstract Cucurbitacin B is a natural triterpene present in plants of Cucurbitaceae family, which are among the host plants for melon aphid, Aphis gossypii. In present study we characterized the effects of two cucurbitacin B concentrations on the biological parameters of adults (F0) and of juveniles and adults of their progeny (F1). The results showed that cucurbitacin B at 25 ppm significantly reduced the adult longevity and fecundity of both F0 and F1 generation. Exposure of F0 generation to 25 ppm though reduced the demographic traits of F1 including the intrinsic rate of increase r (day−1), generation time T (day), finite rate of increase λ (day−1), however, only net reproductive rate R 0 (offspring/individual) decreased significantly. While 100 ppm reduced not only the longevity and fecundity of F0 generation but also the longevity of F1 generation. Fecundity of F1 was not affected by 100 ppm of cucurbitacin B, however, R 0 (offspring/individual) and T (day) of F1 generation were lower than the control population. These results support the hypothesis that high contents of cucurbitacin B caused negative impact on melon aphid and could be used as a lead for classical selection of resistant varieties of plants that are main hosts for the melon aphid

    Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease

    No full text
    Abstract Background Inflammatory bowel disease (IBD) is a chronic nonspecific disease with unknown etiology. Currently, the anti-inflammatory therapeutic approaches have achieved a certain extent of effects in terms of inflammation alleviation. Still, the final pathological outcome of intestinal fibrosis has not been effectively improved yet. Results In this study, dextran-coated cerium oxide (D-CeO2) nanozyme with superoxide dismutase (SOD) and catalase (CAT) activities was synthesized by chemical precipitation. Our results showed that D-CeO2 could efficiently scavenge reactive oxide species (ROS) as well as downregulate the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and iNOS) to protect cells from H2O2-induced oxidative damage. Moreover, D-CeO2 could suppress the expression of fibrosis-related gene levels, such as α-SMA, and Collagen 1/3, demonstrating the anti-fibrotic effect. In both TBNS- and DSS-induced colitis models, oral administration of D-CeO2 in chitosan/alginate hydrogel alleviated intestinal inflammation, reduced colonic damage by scavenging ROS, and decreased inflammatory factor levels. Notably, our findings also suggested that D-CeO2 reduced fibrosis-related cytokine levels, predicting a contribution to alleviating colonic fibrosis. Meanwhile, D-CeO2 could also be employed as a CT contrast agent for noninvasive gastrointestinal tract (GIT) imaging. Conclusion We introduced cerium oxide nanozyme as a novel therapeutic approach with computed tomography (CT)-guided anti-inflammatory and anti-fibrotic therapy for the management of IBD. Collectively, without appreciable systemic toxicity, D-CeO2 held the promise of integrated applications for diagnosis and therapy, pioneering the exploration of nanozymes with ROS scavenging capacity in the anti-fibrotic treatment of IBD

    Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme

    No full text
    Superoxide dismutase (SOD) nanozymes show mitigating effect on oxidative stress-related diseases, but are limited by their modest activity. Here, the authors report a carbon dot SOD nanozyme with catalytic activity matching natural enzymes and unveil its catalytic mechanism
    corecore