111 research outputs found

    A Comprehensive Evaluation of the DFP Method for Geometric Constraint Solving Algorithm Using PlaneGCS

    Get PDF
    The development of open-source geometric constraint solvers is a pressing research topic, as commercially available solvers may not meet the research requirements. In this paper, we examine the use of numerical methods in PlaneGCS, an open-source geometric constraint solver within the FreeCAD CAD software. Our study focuses on PlaneGCS\u27s constraint solving algorithms and the three built-in single-subsystem solving methods: BFGS, LM, and Dogleg. Based on our research results, the DFP method was implemented in PlaneGCS and was successfully verified in FreeCAD. To evaluate the performance of the algorithms, we used the solving state of the constraint system as a test criterion, and analysed their solving time, adaptability, and number of iterations. Our results highlight the performance differences between the algorithms and provide empirical guidance for selection of constraint solving algorithms and research based on open-source geometric constraint solvers

    Towards an Open-Source Industry CAD: A Review of System Development Methods

    Get PDF
    Due to the industry knowledge barrier, general computer aided design (CAD) software cannot do everything in digital manufacturing by itself, and industry CAD, therefore, occupies a crucial position in the CAD industry. To develop industry CAD smoothly, open-source is the best choice. We analyzed recent examples of industry CAD development and divided the development methods into four types: development based on the graphics development environment, development based on geometric modelling kernel, secondary development based on general CAD, and hybrid development. We analyzed the characteristics of various methods and believe that the method based on the hybrid development of the geometric modelling kernel and the graphics development environment is the best open-source industry CAD development method. We proposed a system architecture of open-source industry CAD for reference and conducted a preliminary exploration of the reference architecture to verify its feasibility

    Pattern Classification and PSO Optimal Weights Based Sky Images Cloud Motion Speed Calculation Method for Solar PV Power Forecasting

    Get PDF
    The motion of cloud over a photovoltaic (PV) power station will directly cause the change of solar irradiance, which indirectly affects the prediction of minute-level PV power. Therefore, the calculation of cloud motion speed is very crucial for PV power forecasting. However, due to the influence of complex cloud motion process, it is very difficult to achieve accurate result using a single traditional algorithm. In order to improve the computation accuracy, a pattern classification and particle swarm optimization optimal weights based sky images cloud motion speed calculation method for solar PV power forecasting (PCPOW) is proposed. The method consists of two parts. First, we use a k-means clustering method and texture features based on a gray-level co-occurrence matrix to classify the clouds. Second, for different cloud classes, we build the corresponding combined calculation model to obtain cloud motion speed. Real data recorded at Yunnan Electric Power Research Institute are used for simulation; the results show that the cloud classification and optimal combination model are effective, and the PCPOW can improve the accuracy of displacement calculation.© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    A General Framework for Accelerating Swarm Intelligence Algorithms on FPGAs, GPUs and Multi-core CPUs

    Get PDF
    Swarm intelligence algorithms (SIAs) have demonstrated excellent performance when solving optimization problems including many real-world problems. However, because of their expensive computational cost for some complex problems, SIAs need to be accelerated effectively for better performance. This paper presents a high-performance general framework to accelerate SIAs (FASI). Different from the previous work which accelerate SIAs through enhancing the parallelization only, FASI considers both the memory architectures of hardware platforms and the dataflow of SIAs, and it reschedules the framework of SIAs as a converged dataflow to improve the memory access efficiency. FASI achieves higher acceleration ability by matching the algorithm framework to the hardware architectures. We also design deep optimized structures of the parallelization and convergence of FASI based on the characteristics of specific hardware platforms. We take the quantum behaved particle swarm optimization algorithm (QPSO) as a case to evaluate FASI. The results show that FASI improves the throughput of SIAs and provides better performance through optimizing the hardware implementations. In our experiments, FASI achieves a maximum of 290.7Mbit/s throughput which is higher than several existing systems, and FASI on FPGAs achieves a better speedup than that on GPUs and multi-core CPUs. FASI is up to 123 times and not less than 1.45 times faster in terms of optimization time on Xilinx Kintex Ultrascale xcku040 when compares to Intel Core i7-6700 CPU/ NVIDIA GTX1080 GPU. Finally, we compare the differences of deploying FASI on hardware platforms and provide some guidelines for promoting the acceleration performance according to the hardware architectures

    LncRNA-mediated cartilage homeostasis in osteoarthritis: a narrative review

    Get PDF
    Osteoarthritis (OA) is a degenerative disease of cartilage that affects the quality of life and has increased in morbidity and mortality in recent years. Cartilage homeostasis and dysregulation are thought to be important mechanisms involved in the development of OA. Many studies suggest that lncRNAs are involved in cartilage homeostasis in OA and that lncRNAs can be used to diagnose or treat OA. Among the existing therapeutic regimens, lncRNAs are involved in drug-and nondrug-mediated therapeutic mechanisms and are expected to improve the mechanism of adverse effects or drug resistance. Moreover, targeted lncRNA therapy may also prevent or treat OA. The purpose of this review is to summarize the links between lncRNAs and cartilage homeostasis in OA. In addition, we review the potential applications of lncRNAs at multiple levels of adjuvant and targeted therapies. This review highlights that targeting lncRNAs may be a novel therapeutic strategy for improving and modulating cartilage homeostasis in OA patients

    UniFed: All-In-One Federated Learning Platform to Unify Open-Source Frameworks

    Full text link
    Federated Learning (FL) has become a practical and widely adopted distributed learning paradigm. However, the lack of a comprehensive and standardized solution covering diverse use cases makes it challenging to use in practice. In addition, selecting an appropriate FL framework for a specific use case can be a daunting task. In this work, we present UniFed, the first unified platform for standardizing existing open-source FL frameworks. The platform streamlines the end-to-end workflow for distributed experimentation and deployment, encompassing 11 popular open-source FL frameworks. In particular, to address the substantial variations in workflows and data formats, UniFed introduces a configuration-based schema-enforced task specification, offering 20 editable fields. UniFed also provides functionalities such as distributed execution management, logging, and data analysis. With UniFed, we evaluate and compare 11 popular FL frameworks from the perspectives of functionality, privacy protection, and performance, through conducting developer surveys and code-level investigation. We collect 15 diverse FL scenario setups (e.g., horizontal and vertical settings) for FL framework evaluation. This comprehensive evaluation allows us to analyze both model and system performance, providing detailed comparisons and offering recommendations for framework selection. UniFed simplifies the process of selecting and utilizing the appropriate FL framework for specific use cases, while enabling standardized distributed experimentation and deployment. Our results and analysis based on experiments with up to 178 distributed nodes provide valuable system design and deployment insights, aiming to empower practitioners in their pursuit of effective FL solutions.Comment: Code: https://github.com/AI-secure/FLBenchmark-toolkit Website: https://unifedbenchmark.github.io

    Pomegranate seed oil stabilized with ovalbumin glycated by inulin: Physicochemical stability and oxidative stability

    Get PDF
    Pomegranate seed oil is rich of conjugated fatty acids which are highly appealing for a variety of applications in food industry. In this research, ovalbumin (OVA) and ovalbumin-inulin glycoconjugates with different Maillard reaction times were used to stabilize pomegranate seed oil emulsions and their impact on physicochemical stability and oxidative stability of the products was investigated. The OVA-inulin glycoconjugate produced on 10th day of Maillard reaction has exhibited significantly higher conjugation efficiency, lower surface hydrophobicity and lower surface tension than other glycoconjugates. The secondary conformation of OVA and conjugates determined by far-UV circular dichroism spectroscopy has remarkably changed. The reduction in intensity of Trp-fluorescence observed in glycated proteins with inulin indicated that the glycation affected partially the side chains of protein in tertiary structure through the Maillard reaction without great disruption of native structure. The emulsion stabilized by OVA-inulin glycoconjugate obtained by 10 days Maillard reaction has shown the best physicochemical stability. Compared with the OVA emulsion, the oxidative stability of the glycated OVA emulsion system was significantly improved (p < 0.05). Fatty acid profile results also confirmed that OVA-inulin glycoconjugates were able to prevent the pomegranate seed oil from oxidation. It is suggested that the inulin attached to OVA by glycation played a vital role in physicochemical stability and oxidative stability of pomegranate seed oil emulsions

    Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires

    Get PDF
    Parabolic pulses have important applications in both basic and applied sciences, such as high power optical amplification, optical communications, all-optical signal processing, etc. The generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires at telecom (λ~1550 nm) and mid-IR (λ≥2100 nm) wavelengths is demonstrated and analyzed. The self-similar theory of parabolic pulse generation in passive waveguides with increasing nonlinearity is presented. A generalized nonlinear Schrödinger equation is used to describe the coupled dynamics of optical field in the tapered hydrogenated amorphous silicon photonic wires with either decreasing dispersion or increasing nonlinearity. The impacts of length dependent higher-order effects, linear and nonlinear losses including two-photon absorption, and photongenerated free carriers, on the pulse evolutions are characterized. Numerical simulations show that initial Gaussian pulses will evolve into the parabolic pulses in the waveguide taper designed

    The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications

    Get PDF
    Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments

    Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide

    Get PDF
    Stable octave-spanning supercontinuum (SC) in the mid-infrared (MIR) region finds extensive applications in spectroscopy, metrology, biochemistry, etc. The absorption of conventional silicon- or silicon oxide-dominated nonlinear media makes SC generation in MIR region technically challenging. In this paper, we propose ultra-broadband MIR-SC generation using a suspended germanium-membrane ridge waveguide. We theoretically showed that when pump pulses centered at 4.8 um with pulse width at 180 fs and peak power at 800 W are injected into a 4-mm long proposed ridge waveguide, the SC generated ranges from 1.96 ~ 12 um (about 2.6 octaves), extending deep into the “fingerprint” region. The first-order coherence is calculated to confirm the stability of the generated SC. The performance of the SC-based frequency comb is also investigated by assuming a 100-pulses pump source at a repetition rate of 100 KHz
    corecore