57 research outputs found

    Improving ionic conductivity of von-Alpen-type NASICON ceramic electrolytes via magnesium doping

    Get PDF
    NASICON (sodium (Na) superionic conductor) compounds have attracted considerable attention as promising solid electrolyte materials for advanced Na-based batteries. In this study, we investigated the improvement in ionic conductivities of von-Alpen-type NASICON (vA-NASICON) ceramic electrolytes by introducing a magnesium ion (Mg2+) as a heterogeneous element. The optimal Mg-doped vA-NASICON exhibited a high ionic conductivity of 3.64×10−3 S·cm−1, which was almost 80% higher than that of un-doped vA-NASICON. The changes in physicochemical properties of the vA-NASICONs through the Mg introduction were systematically analyzed, and their effects on the ionic conductivities of the vA-NASICON were studied in detail. When the optimal ratio of Mg2+ was used in a synthetic process, the relative density (96.6%) and grain boundary ionic conductivity (σgb) were maximized, which improved the total ionic conductivity (σt) of the vA-NASICON. However, when Mg2+ was introduced in excess, the ionic conductivity decreased because of the formation of an undesired sodium magnesium phosphate (NaxMgyPO4) secondary phase. The results of this study are expected to be effectively applied in the development of advanced sodium-based solid electrolytes with high ionic conductivities

    Electrochemical Properties of Chemically Processed SiO

    Get PDF
    A SiOx coating material for Si anode in lithium-ion battery was processed by using SiCl4 and ethylene glycol. The produced SiOx particles after heat treatment at 725°C for 1 h were porous and irregularly shaped with amorphous structure. Pitch carbon added to SiOx was found to strongly affect solid electrolyte interphase stabilization and cyclic stability. When mixed with an optimal amount of 30 wt% pitch carbon, the SiOx showed a high charge/discharge cyclic stability of about 97% for the 2nd to the 50th cycle. The initial specific capacity of the SiOx was measured to be 1401 mAh/g. On the basis of the evaluation of the SiOx coating material, the process utilized in this study is considered an efficient method to produce SiOx with high performance in an economical way

    Enhanced Water Splitting by Fe 2

    Get PDF
    The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode

    Dexrazoxane for Preventing Anthracycline Cardiotoxicity in Children with Solid Tumors

    Get PDF
    This study attempted to assess the incidence and outcome of anthracycline cardiotoxicity and the role of dexrazoxane as a cardioprotectant in childhood solid tumors. The dexrazoxane group included 47 patients and the control group of historical cohort included 42. Dexrazoxane was given in the 10:1 ratio to doxorubicin. Fractional shortening and systolic and diastolic left ventricular diameters were used to assess the cardiac function. The median follow-ups were 54 months in the dexrazoxane group and 86 months in the control group. The mean cumulative doses of doxorubicin were 280.8±83.4 mg/m2 in the dexrazoxane group and 266.1±75.0 mg/m2 in the control group. The dexrazoxane group experienced significantly fewer cardiac events (27.7% vs. 52.4%) and less severe congestive heart failure (6.4% vs. 14.3%) than the control group. Thirteen cardiotoxicities including one cardiac death and 2 congestive heart failures occurred in the dexrazoxane group, and 22 cardiotoxicities including 2 cardiac deaths and 4 congestive heart failures, in the control group. Five year cardiac event free survival rates were 69.2% in the dexrazoxane group and 45.8% in the control group (P=0.04). Dexrazoxane reduces the incidence and severity of early and late anthracycline cardiotoxicity in childhood solid tumors

    Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

    Get PDF
    Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis

    Leptin and peroxisome proliferator-activated receptor γ expression in colorectal adenoma

    No full text
    AIM: To investigate the expressions of leptin and peroxisome proliferator-activated receptor γ (PPARG) in relation to body mass index (BMI)

    Open Reduction of Calcaneal Fracture

    No full text

    Acute intestinal pseudo-obstruction after induction treatment of relapsed acute promyelocytic leukemia with arsenic trioxide

    No full text
    Arsenic trioxide (As(2)O(3)) is an effective agent for the treatment of relapsed acute promyelocytic leukemia (APL). We report a patient with intestinal pseudo-obstruction, which occurred while treating relapsed APL with As(2)O(3). A 6-year-old female with relapsed APL developed paralytic ileus, hyperleukocytosis, and a high fever while being treated with As(2)O(3). Although As(2)O(3) was discontinued and dexamethasone was administered, vomiting and abdominal distension worsened. An ileostomy was performed and diffuse patch-like infiltrations on the bowel surface were noted. Pathologic findings revealed APL cells involving the entire intestinal layers. This case history suggests that As(2)O(3) when used for reinduction therapy for APL may adversely affect the intestine and cause acute intestinal pseudo-obstruction

    Comparing different types of statins for secondary prevention of cardio-cerebrovascular disease from a national cohort study.

    No full text
    Statins have been recommended for use in atherosclerotic cardio-cerebrovascular disease (CCVD). The purpose of this study was to investigate the efficacy of five different types of statin in the secondary prevention of CCVD in patients. This study retrospectively designed and analyzed data from the National Health Insurance Service-National Health in Korea. Participants aged 40 to 69 years were categorized into five statin groups (atorvastatin, rosuvastatin, pitavastatin, simvastatin, and pravastatin). The primary composite outcome was defined as recurrence of CCVD or all causes of death. Cox proportional hazard regression models were adopted after stepwise adjustments for confounders to investigate the difference in efficacy among the different statins. Of the 755 final participants, 48 patients experienced primary composite outcomes. After adjustments, the hazard ratios (95% confidence intervals) for primary composite outcomes of atorvastatin, pitavastatin, and rosuvastatin groups were 0.956 (0.456-2.005), 1.347 (0.354-5.116), and 0.943 (0.317-2.803), respectively, when compared with the simvastatin group. There were no significant differences between the statins in efficacy for preventing recurrence of CCVD events and/or death in CCVD patients
    corecore