133 research outputs found

    Rapid induction of p21WAF1 but delayed down-regulation of Cdc25A in the TGF-Ξ²-induced cell cycle arrest of gastric carcinoma cells

    Get PDF
    Transforming growth factor-beta (TGF-beta) is a multifunctional polypeptide that inhibits cellular proliferation in most epithelial cells. cdk4 and several cyclin-dependent kinase (cdk) inhibitors (p15(INK4B), p21(WAFI/Cip1) and p27(Kip1)) have been implicated in the TGF-beta-induced cell cycle arrest. More recently, down-regulation of Cdc25A, a cdk activator, was additionally suggested as a mechanism underlying growth inhibition by TGF-beta. The existence of diverse cellular mediators, of TGF-beta, however, raises the question of whether their involvement might occur in a redundant manner or coordinately in a certain cell type. Using two TGF-beta-sensitive gastric carcinoma cell lines (SNU-16 and -620), we addressed the contributory roles of several cdk inhibitors, and of cdk4 and Cdc25A, in TGF-beta-induced cell cycle arrest by comparing their temporal expression pattern in response to TGF-beta. Among the cdk inhibitors examined, p21 mRNA was most rapidly (in less than 1 h) and prominently induced by TGF-beta. In contrast, p15 mRNA was more slowly induced than p21 in SNU-620: cells, and not expressed in SNU-16 cells harbouring homozygous deletion of p15. Western blotting results confirmed the rapid increase of p21 while opposite patterns of p27 expression were observed in the two cell lines. The down-regulation of Cdc25A mRNA occurred, but was more delayed than that of p15 or p21. Until G1 arrest was established, changes in the protein levels of both Cdc25A and cdk4 were marginal. Co-immunoprecipitation with anti-cdk4 antibody showed that induced p21 associates with cdk4, and that its kinase activity is reduced by TGF-beta, which kinetically correlates closely with G1 arrest following TGF-beta treatment of both cell lines. These results suggest that in certain human epithelial cells, p21 may play an early role in TGF-beta-induced cell cycle arrest, and its cooperation with other cdk inhibitors is different depending on cell type. Delayed down-regulation of Cdc25A and cdk4 may contribute to cell adaptation to the quiescent state in the two gastric carcinoma cell lines studied

    Restoration of TGF-Ξ² signalling reduces tumorigenicity in human lung cancer cells

    Get PDF
    Members of the transforming growth factor-Ξ² (TGF-Ξ²) family regulate a wide range of biological processes including cell proliferation, migration, differentiation, apoptosis, and extracellular matrix deposition. Resistance to TGF-Ξ²-mediated tumour suppressor function in human lung cancer may occur through the loss of type II receptor (TΞ²RII) expression. In this study, we investigated the expression pattern of TΞ²RII in human lung cancer tissues by RT–PCR and Western blot analyses. We observed downregulation of TΞ²RII in 30 out of 46 NSCLC samples (65%) by semiquantitative RT–PCR. Western blot analyses with tumour lysates showed reduced expression of TΞ²RII in 77% cases. We also determined the effect of TΞ²RII expression in lung adenocarcinoma cell line (VMRC-LCD) that is not responsive to TGF-Ξ² due to lack of TΞ²RII expression. Stable expression of TΞ²RII in these cells restored TGF-Ξ²-mediated effects including Smad2/3 and Smad4 complex formation, TGF-Ξ²-responsive reporter gene activation, inhibition of cell proliferation and increased apoptosis. Clones expressing TΞ²RII showed reduced colony formation in soft-agarose assay and significantly reduced tumorigenicity in athymic nude mice. Therefore, these results suggest that reestablishment of TGF-Ξ² signalling in TΞ²RII null cells by stable expression of TΞ²RII can reverse malignant behaviour of cells and loss of TΞ²RII expression may be involved in lung tumour progression

    Mutations in Protein-Binding Hot-Spots on the Hub Protein Smad3 Differentially Affect Its Protein Interactions and Smad3-Regulated Gene Expression

    Get PDF
    Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses.We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression.Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses

    Hypoxia and TGF-Ξ² Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment

    Get PDF
    BACKGROUND: Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- beta. We asked whether hypoxia (via HIF-1alpha) and TGF-beta signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed interactions between HIF-1alpha and TGF-beta pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-beta and hypoxia, with effects on the proximal promoters. We inhibited HIF-1alpha and TGF-beta pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells. CONCLUSIONS/SIGNIFICANCE: Hypoxia and TGF-beta signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1alpha and TGF-beta may improve treatment of bone metastases and increase survival

    Suppression of TGFΞ²-Induced Epithelial-Mesenchymal Transition Like Phenotype by a PIAS1 Regulated Sumoylation Pathway in NMuMG Epithelial Cells

    Get PDF
    Epithelial-mesenchymal-transition (EMT) is a fundamental cellular process that is critical for normal development and tumor metastasis. The transforming growth factor beta (TGFΞ²) is a potent inducer of EMT like effects, but the mechanisms that regulate TGFΞ²-induced EMT remain incompletely understood. Using the widely employed NMuMG mammary epithelial cells as a model to study TGFΞ²-induced EMT, we report that TGFΞ² downregulates the levels of the SUMO E3 ligase PIAS1 in cells undergoing EMT. Gain and loss of function analyses indicate that PIAS1 acts in a SUMO ligase dependent manner to suppress the ability of TGFΞ² to induce EMT in these cells. We also find that TGFΞ² inhibits sumoylation of the PIAS1 substrate SnoN, a transcriptional regulator that antagonizes TGFΞ²-induced EMT. Accordingly, loss of function mutations of SnoN sumoylation impair the ability of SnoN to inhibit TGFΞ²-induced EMT in NMuMG cells. Collectively, our findings suggest that PIAS1 is a novel negative regulator of EMT and reveal that inhibition of the PIAS1-SnoN sumoylation pathway represents a key mechanism by which TGFΞ² induces EMT, with important implications in normal development and tumor metastasis

    Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease

    Get PDF
    In patients with progressive podocyte disease, such as focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, upregulation of transforming growth factor-ß (TGF-ß) is observed in podocytes. Mechanical pressure or biomechanical strain in podocytopathies may cause overexpression of TGF-ß and angiotensin II (Ang II). Oxidative stress induced by Ang II may activate the latent TGF-ß, which then activates Smads and Ras/extracellular signal-regulated kinase (ERK) signaling pathways in podocytes. Enhanced TGF-ß activity in podocytes may lead to thickening of the glomerular basement membrane (GBM) by overproduction of GBM proteins and impaired GBM degradation in podocyte disease. It may also lead to podocyte apoptosis and detachment from the GBM, and epithelial-mesenchymal transition (EMT) of podocytes, initiating the development of glomerulosclerosis. Furthermore, activated TGF-ß/Smad signaling by podocytes may induce connective tissue growth factor and vascular endothelial growth factor overexpression, which could act as a paracrine effector mechanism on mesangial cells to stimulate mesangial matrix synthesis. In proliferative podocytopathies, such as cellular or collapsing FSGS, TGF-ß-induced ERK activation may play a role in podocyte proliferation, possibly via TGF-ß-induced EMT of podocytes. Collectively, these data bring new mechanistic insights into our understanding of the TGF-ß overexpression by podocytes in progressive podocyte disease

    A83-01 inhibits TGF-Ξ²-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells

    Get PDF
    PurposeThe aim of this study is to investigate the mechanisms of interactions between TGF-Ξ² and Wnt/Ξ²-catenin pathways that induce and regulate EMT and promote breast cancer cells to become resistant to treatment.MethodsThe effect of TGF-Ξ² on Wnt/Ξ²-catenin signaling pathway was examined by using a human Wnt/Ξ²-catenin-regulated cDNA plate array and western blot analysis. The interaction of Twist at promoter of Wnt3 was examined by chromatin immunoprecipitation (ChIP) assay. Secreted Wnt3 level was determined by ELISA assay.ResultsHER2-overexpressing breast cancer cells treated with TGF-Ξ² have a reduced response to trastuzumab and exhibited EMT-like phenotype. The TGF-Ξ²-induced EMT in HER2-cells was concordant with upregulation of Wnt3 and Ξ²-catenin pathways. The TGF-Ξ²-induced induction of Wnt3 during EMT was found to be Smad3-dependent. ChIP analysis identified occupancy of Twist at promoter region of Wnt3. Knock-down of Twist by shRNA confirmed the significance of Twist in response to TGF-Ξ² regulating Wnt3 during EMT. Subsequently, TGF-Ξ²-induced matrix metalloproteinases, MMP1, MMP7, MMP9, MMP26, Vascular endothelial growth factors (VEGF), and activation of Wnt/Ξ²-catenin signaling were repressed by the shRNA treatment. TGF-Ξ²R1 ALK5 kinase inhibitor, A83-01 can effectively prevent the TGF-Ξ²-induced Twist and Wnt3. Co-treating A83-01 and trastuzumab inhibited TGF-Ξ²-induced cell invasion significantly in both trastuzumab responsive and resistant cells.ConclusionsOur data demonstrated an important interdependence between TGF-Ξ² and Wnt/Ξ²-catenin pathways inducing EMT in HER2-overexpressing breast cancer cells. Twist served as a linkage between the two pathways during TGF-Ξ²-induced EMT. A83-01 could inhibit the TGF-Ξ²-initiated pathway interactions and enhance HER2-cells response to trastuzumab treatment

    Sox17 Promotes Cell Cycle Progression and Inhibits TGF-Ξ²/Smad3 Signaling to Initiate Progenitor Cell Behavior in the Respiratory Epithelium

    Get PDF
    The Sry-related high mobility group box transcription factor Sox17 is required for diverse developmental processes including endoderm formation, vascular development, and fetal hematopoietic stem cell maintenance. Expression of Sox17 in mature respiratory epithelial cells causes proliferation and lineage respecification, suggesting that Sox17 can alter adult lung progenitor cell fate. In this paper, we identify mechanisms by which Sox17 influences lung epithelial progenitor cell behavior and reprograms cell fate in the mature respiratory epithelium. Conditional expression of Sox17 in epithelial cells of the adult mouse lung demonstrated that cell cluster formation and respecification of alveolar progenitor cells toward proximal airway lineages were rapidly reversible processes. Prolonged expression of Sox17 caused the ectopic formation of bronchiolar-like structures with diverse respiratory epithelial cell characteristics in alveolar regions of lung. During initiation of progenitor cell behavior, Sox17 induced proliferation and increased the expression of the progenitor cell marker Sca-1 and genes involved in cell cycle progression. Notably, Sox17 enhanced cyclin D1 expression in vivo and activated cyclin D1 promoter activity in vitro. Sox17 decreased the expression of transforming growth factor-beta (TGF-Ξ²)-responsive cell cycle inhibitors in the adult mouse lung, including p15, p21, and p57, and inhibited TGF-Ξ²1-mediated transcriptional responses in vitro. Further, Sox17 interacted with Smad3 and blocked Smad3 DNA binding and transcriptional activity. Together, these data show that a subset of mature respiratory epithelial cells retains remarkable phenotypic plasticity and that Sox17, a gene required for early endoderm formation, activates the cell cycle and reinitiates multipotent progenitor cell behavior in mature lung cells

    BRCA1 Interacts with Smad3 and Regulates Smad3-Mediated TGF-Ξ² Signaling during Oxidative Stress Responses

    Get PDF
    BRCA1 is a key regulatory protein participating in cell cycle checkpoint and DNA damage repair networks. BRCA1 plays important roles in protecting numerous cellular processes in response to cell damaging signals. Transforming growth factor-beta (TGF-beta) is a potent regulator of growth, apoptosis and invasiveness of tumor cells. TFG-beta activates Smad signaling via its two cell surface receptors, the TbetaRII and ALK5/TbetaRI, leading to Smad-mediated transcriptional regulation.Here, we report an important role of BRCA1 in modulating TGF-beta signaling during oxidative stress responses. Wild-type (WT) BRCA1, but not mutated BRCA1 failed to activate TGF-beta mediated transactivation of the TGF-beta responsive reporter, p3TP-Lux. Further, WT-BRCA1, but not mutated BRCA1 increased the expression of Smad3 protein in a dose-dependent manner, while silencing of WT-BRCA1 by siRNA decreased Smad3 and Smad4 interaction induced by TGF-beta in MCF-7 breast cancer cells. BRCA1 interacted with Smad3 upon TGF-beta1 stimulation in MCF-7 cells and this interaction was mediated via the domain of 298-436aa of BRCA1 and Smad3 domain of 207-426aa. In addition, H(2)O(2) increased the colocalization and the interaction of Smad3 with WT-BRCA1. Interestingly, TGF-beta1 induced Smad3 and Smad4 interaction was increased in the presence of H(2)O(2) in cells expressing WT-BRCA1, while the TGF-beta1 induced interaction between Smad3 and Smad4 was decreased upon H(2)O(2) treatment in a dose-dependent manner in HCC1937 breast cancer cells, deficient for endogenous BRCA1. This interaction between Smad3 and Smad4 was increased in reconstituted HCC1937 cells expressing WT-BRCA1 (HCC1937/BRCA1). Further, loss of BRCA1 resulted in H(2)O(2) induced nuclear export of phosphor-Smad3 protein to the cytoplasm, resulting decreased of Smad3 and Smad4 interaction induced by TGF-beta and in significant decrease in Smad3 and Smad4 transcriptional activities.These results strongly suggest that loss or reduction of BRCA1 alters TGF-beta growth inhibiting activity via Smad3 during oxidative stress responses

    Induction by transforming growth factor-Ξ²1 of epithelial to mesenchymal transition is a rare event in vitro

    Get PDF
    INTRODUCTION: Transforming growth factor (TGF)-Ξ²1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell–cell contacts. Although there is growing interest in TGF-Ξ²1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS: To identify alternative cell systems in which to study TGF-Ξ²1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-Ξ²1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-Ξ²1 was also determined by [(3)H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS: TGF-Ξ²1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-Ξ²1. In contrast, TGF-Ξ²1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-Ξ²1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-Ξ²1-induced EMT. CONCLUSION: The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-Ξ²1, most show evidence of TGF-Ξ²1 signal transduction, but only a few cell lines undergo TGF-Ξ²1-mediated EMT
    • …
    corecore