40,354 research outputs found

    A Novel Method for the Solution of the Schroedinger Eq. in the Presence of Exchange Terms

    Full text link
    In the Hartree-Fock approximation the Pauli exclusion principle leads to a Schroedinger Eq. of an integro-differential form. We describe a new spectral noniterative method (S-IEM), previously developed for solving the Lippman-Schwinger integral equation with local potentials, which has now been extended so as to include the exchange nonlocality. We apply it to the restricted case of electron-Hydrogen scattering in which the bound electron remains in the ground state and the incident electron has zero angular momentum, and we compare the acuracy and economy of the new method to three other methods. One is a non-iterative solution (NIEM) of the integral equation as described by Sams and Kouri in 1969. Another is an iterative method introduced by Kim and Udagawa in 1990 for nuclear physics applications, which makes an expansion of the solution into an especially favorable basis obtained by a method of moments. The third one is based on the Singular Value Decomposition of the exchange term followed by iterations over the remainder. The S-IEM method turns out to be more accurate by many orders of magnitude than any of the other three methods described above for the same number of mesh points.Comment: 29 pages, 4 figures, submitted to Phys. Rev.

    Suaeda japonica Makino Attenuates Lipopolysaccharide- Induced Neuro-Inflammatory Responses in BV-2 Microglia via NF-kappa B Signaling

    Get PDF
    Purpose: To evaluate in vitro anti-oxidant and anti-neuro-inflammatory activities of Suaeda japonica extract (SJE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells.Methods: 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay was used to study the antioxidant effects. 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium bromide (MTT) assay was used to study cell viabilities. LPS-stimulated BV- microglial cells were used to study the geneexpression and production of inflammatory mediators determined by Western blot analysis.Results: SJE significantly inhibited the DPPH generated free radicals, and suppressed LPS-induced expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO) in a concentration-dependent manner. It decreased LPS-induced expression of some inflammatorymediators and pro-inflammatory cytokines (cyclooxygenase-2 and interleukin (IL)-6). This suppression of inflammatory mediators was nuclear factor kappa-B (NF-êB)-dependent.Conclusion: Our findings imply that SJE may be a potential therapeutic agent in regulating microgliamediated neuroinflammatory responses observed in several neurodegenerative diseases.Keywords: Suaeda japonica, Antioxidant activity, Anti-inflammatory activity, Microglial Cells, iNOS, IL-6

    Characterization of cDNAs Encoding Small GTP-Binding Proteins from Maize

    Full text link

    Distribution of equilibrium free energies in a thermodynamic system with broken ergodicity

    Full text link
    At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N1023N\sim 10^{23} interacting particles may split into an exponential number Ωsexp(const×N)\Omega_s \sim \exp({\rm const} \times N) of ergodic sub-spaces (thermodynamic states). Previous theoretical studies assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponential decay. Here we show that these assumptions are not necessarily valid. For some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by {\em excited} thermodynamic states. This work will help improving our understanding of the equilibrium statistical mechanics of spin-glasses and other complex systems.Comment: 7 pages, 2 figure

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies 50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (MsafewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005

    Non-local Control of the Kondo Effect in a Double Quantum Dot-Quantum Wire Coupled System

    Full text link
    We have performed low-temperature transport measurements on a double quantum dot-quantum wire coupled device and demonstrated non-local control of the Kondo effect in one dot by manipulating the electronic spin states of the other. We discuss the modulation of the local density of states in the wire region due to the Fano-Kondo antiresonance, and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) exchange interaction as the mechanisms responsible for the observed features.Comment: 4 pages, 4 figure

    Interference through quantum dots

    Full text link
    We discuss the effect of quantum interference on transport through a quantum dot system. We introduce an indirect coherent coupling parameter alpha, which provides constructive/destructive interference in the transport current depending on its phase and the magnetic flux. We estimate the current through the quantum dot system using the non-equilibrium Green's function method as well as the master equation method in the sequential tunneling regime. The visibility of the Aharonov-Bohm oscillation is evaluated. For a large inter-dot Coulomb interaction, the current is strongly suppressed by the quantum interference effect, while the current is restored by applying an oscillating resonance field with the frequency of twice the inter-dot tunneling energy.Comment: 10 pages, 3 figure
    corecore