54 research outputs found

    Crystal structures of murine norovirus-1 RNA-dependent RNA polymerase in complex with 2-thiouridine or ribavirin

    Get PDF
    AbstractMurine norovirus-1 (MNV-1) shares many features with human norovirus (HuNoV) and both are classified within the norovirus genus of Caliciviridae family. MNV-1 is used as the surrogate for HuNoV research since it is the only form that can be grown in cell culture. HuNoV and MNV-1 RNA dependent RNA polymerase (RdRp) proteins with the sequence identity of 59% show essentially identical conformations. Here we report the first structural evidence of 2-thiouridine (2TU) or ribavirin binding to MNV-1 RdRp, based on the crystal structures determined at 2.2Å and 2.5Å resolutions, respectively. Cellular and biochemical studies revealed stronger inhibitory effect of 2TU on the replication of MNV-1 in RAW 264.7 cells, compared to that of ribavirin. Our complex structures highlight the key interactions involved in recognition of the nucleoside analogs which block the active site of the viral RNA polymerase

    Identification of amino acids within norovirus polymerase involved in RNA binding and viral replication.

    Get PDF
    Until recently, molecular studies on human norovirus (HuNoV), a major causative agent of gastroenteritis, have been hampered by the lack of an efficient cell culture system. Murine norovirus-1 (MNV-1) has served as a surrogate model system for norovirus research, due to the availability of robust cell culture systems and reverse genetics. To identify amino acids involved in RNA synthesis by the viral RNA-dependent RNA polymerase (NS7), we constructed NS7 mutants in which basic amino acids surrounding the catalytic site were substituted with alanine. Electrophoretic mobility shift assay revealed that these residues are important for RNA binding, particularly R396. Furthermore, in vitro RNA synthesis and reverse genetics were used to identify conserved amino acids essential for RNA synthesis and viral replication. These results provide additional functional insights into highly conserved amino acids in NS7 and provide potential methods of rational attenuation of norovirus replication.This study was supported by grants from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs (A085119) and Basic Science Research Programs through NRF funded by the Ministry of Education (NRF-2013R1A1A2064940, L.J.-H. and NRF-2016R1A6A3A01012238, K.R.H.). BA was supported by funding from Qassim University, Saudi Arabia, and the work in the lab of IG is supported by the Wellcome Trust (097997/Z/11/Z). K.R.H. was a recipient of postdoctoral fellowship from the BK21+ program. IG is a Wellcome Senior Fellow

    Safety and Efficacy of Second-Generation Everolimus-Eluting Xience V Stents Versus Zotarolimus-Eluting Resolute Stents in Real-World Practice Patient-Related and Stent-Related Outcomes From the Multicenter Prospective EXCELLENT and RESOLUTE-Korea Registries

    Get PDF
    ObjectivesThis study sought to compare the safety and efficacy of the Xience V/Promus everolimus-eluting stent (EES) (Abbott Vascular, Temecula, California) with the Endeavor Resolute zotarolimus-eluting stent (ZES-R) (Medtronic Cardiovascular, Santa Rosa, California) in “all-comer” cohorts.BackgroundOnly 2 randomized controlled trials have compared these stents.MethodsThe EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) and RESOLUTE-Korea registries prospectively enrolled 3,056 patients treated with the EES and 1,998 patients treated with the ZES-R, respectively, without exclusions. Stent-related composite outcomes (target lesion failure [TLF]) and patient-related composite outcomes were compared in crude and propensity score-matched analyses.ResultsOf 5,054 patients, 3,830 (75.8%) had off-label indication (2,217 treated with EES and 1,613 treated with ZES-R). The stent-related outcome (82 [2.7%] vs. 58 [2.9%], p = 0.662) and the patient-related outcome (225 [7.4%] vs. 153 [7.7%], p = 0.702) did not differ between EES and ZES-R, respectively, at 1 year, which was corroborated by similar results from the propensity score-matched cohort. The rate of definite or probable stent thrombosis (18 [0.6%] vs. 7 [0.4%], p = 0.306) also was similar. In multivariate analysis, off-label indication was the strongest predictor of TLF (adjusted hazard ratio: 2.882; 95% confidence interval: 1.226 to 6.779; p = 0.015).ConclusionsIn this robust real-world registry with unrestricted use of EES and ZES-R, both stents showed comparable safety and efficacy at 1-year follow-up. Overall incidences of TLF and definite stent thrombosis were low, even in the patients with off-label indication, suggesting excellent safety and efficacy of both types of second-generation drug-eluting stents

    Differential LINE-1 Hypomethylation of Gastric Low-Grade Dysplasia from High Grade Dysplasia and Intramucosal Cancer

    Get PDF

    GPX8 regulates clear cell renal cell carcinoma tumorigenesis through promoting lipogenesis by NNMT

    Get PDF
    Background Clear cell renal cell carcinoma (ccRCC), with its hallmark phenotype of high cytosolic lipid content, is considered a metabolic cancer. Despite the implication of this lipid-rich phenotype in ccRCC tumorigenesis, the roles and regulators of de novo lipid synthesis (DNL) in ccRCC remain largely unexplained. Methods Our bioinformatic screening focused on ccRCC-lipid phenotypes identified glutathione peroxidase 8 (GPX8), as a clinically relevant upstream regulator of DNL. GPX8 genetic silencing was performed with CRISPR-Cas9 or shRNA in ccRCC cell lines to dissect its roles. Untargeted metabolomics, RNA-seq analyses, and other biochemical assays (e.g., lipid droplets staining, fatty acid uptake, cell proliferation, xenograft, etc.) were carried out to investigate the GPX8s involvement in lipid metabolism and tumorigenesis in ccRCC. The lipid metabolic function of GPX8 and its downstream were also measured by isotope-tracing-based DNL flux measurement. Results GPX8 knockout or downregulation substantially reduced lipid droplet levels (independent of lipid uptake), fatty acid de novo synthesis, triglyceride esterification in vitro, and tumor growth in vivo. The downstream regulator was identified as nicotinamide N-methyltransferase (NNMT): its knockdown phenocopied, and its expression rescued, GPX8 silencing both in vitro and in vivo. Mechanically, GPX8 regulated NNMT via IL6-STAT3 signaling, and blocking this axis suppressed ccRCC survival by activating AMPK. Notably, neither the GPX8-NNMT axis nor the DNL flux was affected by the von Hippel Lindau (VHL) status, the conventional regulator of ccRCC high lipid content. Conclusions Taken together, our findings unravel the roles of the VHL-independent GPX8-NNMT axis in ccRCC lipid metabolism as related to the phenotypes and growth of ccRCC, which may be targeted for therapeutic purposes. Graphical abstractThe research was supported by the Basic Science Research Program (grant NRF-2018R1A3B1052328 to S.P.) funded by the Ministry of Science, Information and Communication Technology, by Future Planning through the National Research Foundation, and by the Basic Science Research Program through the National Research Foundation (NRF-2020R1I1A1A01073124 to J-M.K.) funded by the Ministry of Education of Korea

    Reducing Particulates and Gaseous Emissions through Fuel Switching from Coal to Wood Pellets at Power Plants in South Korea during 2005 to 2022

    Get PDF
    This study analyzed the particulates and gaseous emissions from 2005 to 2022 for power plants in South Korea (Utility scale: 125 MW (B-1) and 200 MW (B-2), respectively), which recently successfully converted from coal to wood pellets. The analysis showed that (1) NOx reduction was 78.9 to 90.0% (with outlet denitrification facility), (2) SOx reduction was 95.0 to 99.6% (without desulfurization facility condition), and (3) total suspended particles (TSP) reduction was 70.3 to 87.2% (with improved filtration and dust collection facility). This research confirmed the capabilities of wood pellets as a baseload power source and demonstrated their superior NOx reduction compared to coal. In the case of SOx, the desulfurization facility was discontinued at the stage of the fuel switch, so the value was affected by exogenous variable factors other than fuel. The TSP appears to be a combination of the ‘fine dust' contained in the wood pellets and the performance of the filtration dust collector. The results suggest that fuel switching to wood pellets is a viable alternative to fossil fuels as an appropriate climate technology
    • 

    corecore