58,919 research outputs found
Parity Effect in a mesoscopic superconducting ring
We study a mesoscopic superconducting ring threaded by a magnetic flux when
the single particle level spacing is not negligible. It is shown that, for a
superconducting ring with even parity, the behavior of persistent current is
equivalent to what is expected in a bulk superconducting ring. On the other
hand, we find that a ring with odd parity shows anomalous behavior such as
fluxoid quantization at half-integral multiples of the flux quantum and
paramagnetic response at low temperature. We also discuss how the parity effect
in the persistent current disappears as the temperature is raised or as the
size of the ring increases.Comment: 8 pages, 2 figures, to appear in Europhys. Let
Phase Diagram of Adsorbate-Induced Row-Type-Alignments
The phase diagram of adsorbate-induced row-type-alignments, such as
missing-row reconstructions induced by adsorbate-atoms on the FCC(110) surface,
is calculated by the Blume-Emmery-Griffiths (BEG) model. In the model, we
introduce adatom-adatom and dipole-dipole interactions between nearest-neighbor
(NN) and next-nearest-neighbor (NNN) rows. The calculation of the temperature
versus adatom chemical potential phase diagram is performed using mean-field
approximation. It is indicated that when NN and NNN interactions are
competitive, there appear either dipole or coverage modulated (incommensurate)
phases at high temperatures for wide regime of the interactions.Comment: 5 pages, 6 figures, ICSOS'99. to appear in Surf. Rev. and Let
Bounds on the lightest Higgs boson mass with three and four fermion generations
We present lower bounds on the Higgs boson mass in the Standard Model with
three and four fermion generations SM(3,4), as well as upper bounds on the
lightest Higgs boson mass in the minimal supersymmetric extension of the SM
with three and four generations MSSM(3,4). Our analysis utilizes the SM(3,4)
renormalization-group-improved one-loop effective potential of the Higgs boson
to find the upper bounds on the Higgs mass in the MSSM(3,4) while the lower
bounds in the SM(3,4) are derived from considerations of vacuum stability. All
the bounds increase as the degenerate fourth generation mass increases,
providing more room in theory space that respects the increasing experimental
lower limit of the Higgs mass.Comment: 24 pages, 10 figures, Some additional discussion added. Final version
to be published in International Journal of Modern Physics
Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors
Electronic Raman scattering from high- and low-energy excitations was studied
as a function of temperature, extent of hole doping, and energy of the incident
photons in Bi_2Sr_2CaCu_2O_{8 \pm \delta} superconductors. For underdoped
superconductors, short range antiferromagnetic (AF) correlations were found to
persist with hole doping, and doped single holes were found to be incoherent in
the AF environment. Above the superconducting (SC) transition temperature T_c,
the system exhibits a sharp Raman resonance of B_{1g} symmetry and energy of 75
meV and a pseudogap for electron-hole excitations below 75 meV, a manifestation
of a partially coherent state forming from doped incoherent quasi particles.
The occupancy of the coherent state increases with cooling until phase ordering
at T_c produces a global SC state.Comment: 6 pages, 4 color figures, PDF forma
Spin Fluctuation Induced Dephasing in a Mesoscopic Ring
We investigate the persistent current in a hybrid Aharonov-Bohm ring -
quantum dot system coupled to a reservoir which provides spin fluctuations. It
is shown that the spin exchange interaction between the quantum dot and the
reservoir induces dephasing in the absence of direct charge transfer. We
demonstrate an anomalous nature of this spin-fluctuation induced dephasing
which tends to enhance the persistent current. We explain our result in terms
of the separation of the spin from the charge degree of freedom. The nature of
the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure
Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot
We study coherent charge transfer between an Aharonov-Bohm ring and a
side-attached quantum dot. The charge fluctuation between the two
sub-structures is shown to give rise to algebraic suppression of the persistent
current circulating the ring as the size of the ring becomes relatively large.
The charge fluctuation at resonance provides transition between the diamagnetic
and the paramagnetic states.
Universal scaling, crossover behavior of the persistent current from a
continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure
Reaction-diffusion with a time-dependent reaction rate: the single-species diffusion-annihilation process
We study the single-species diffusion-annihilation process with a
time-dependent reaction rate, lambda(t)=lambda_0 t^-omega. Scaling arguments
show that there is a critical value of the decay exponent omega_c(d) separating
a reaction-limited regime for omega > omega_c from a diffusion-limited regime
for omega < omega_c. The particle density displays a mean-field,
omega-dependent, decay when the process is reaction limited whereas it behaves
as for a constant reaction rate when the process is diffusion limited. These
results are confirmed by Monte Carlo simulations. They allow us to discuss the
scaling behaviour of coupled diffusion-annihilation processes in terms of
effective time-dependent reaction rates.Comment: 11 pages, 9 figures, minor correction
- …