52,522 research outputs found
Gauge/String-Gravity Duality and Froissart Bound
The gauge/string-gravity duality correspondence opened renewed hope and
possibility to address some of the fundamental and non-perturbative QCD
problems in particle physics, such as hadron spectrum and Regge behavior of the
scattering amplitude at high energies. One of the most fundamental and
long-standing problem is the high energy behavior of total cross-sections.
According to a series of exhaustive tests by the COMPETE group, (1). total
cross-sections have a universal Heisenberg behavior in energy corresponding to
the maximal energy behavior allowed by the Froissart bound, i.e., with and for all reactions,
and (2). the factorization relation among is well satisfied by experiments. I discuss the
recent interesting application of the gauge/string-gravity duality of
correspondence with a deformed background metric so as to break the conformal
symmetry that can lead to the Heisenberg behavior of rising total
cross-sections, and present some preliminary results on the high energy QCD
from Planckian scattering in and black-hole production.Comment: 10 pages, Presented to the Coral Gables Conference 2003, Launching of
BelleE\'poque in High Energy Physics and Cosmology, 17 - 21 December 2003,
Fort Lauderdale, Florid
Electronic structure of YbB: Is it a Topological Insulator or not?
To resolve the controversial issue of the topological nature of the
electronic structure of YbB, we have made a combined study using density
functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES).
Accurate determination of the low energy band topology in DFT requires the use
of modified Becke-Johnson exchange potential incorporating the spin-orbit
coupling and the on-site Coulomb interaction of Yb electrons as large
as 7 eV. We have double-checked the DFT result with the more precise GW band
calculation. ARPES is done with the non-polar (110) surface termination to
avoid band bending and quantum well confinement that have confused ARPES
spectra taken on the polar (001) surface termination. Thereby we show
definitively that YbB has a topologically trivial B 2-Yb 5
semiconductor band gap, and hence is a non-Kondo non-topological insulator
(TI). In agreement with theory, ARPES shows pure divalency for Yb and a -
band gap of 0.3 eV, which clearly rules out both of the previous scenarios of
- band inversion Kondo TI and - band inversion non-Kondo TI. We
have also examined the pressure-dependent electronic structure of YbB,
and found that the high pressure phase is not a Kondo TI but a
\emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary
information contains 6 figures. 11 pages, 10 figures in total To be appeared
in Phys. Rev. Lett. (Online publication is around March 16 if no delays.
Stabilizing the forming process in unipolar resistance switching using an improved compliance current limiter
The high reset current IR in unipolar resistance switching now poses major
obstacles to practical applications in memory devices. In particular, the first
IR-value after the forming process is so high that the capacitors sometimes do
not exhibit reliable unipolar resistance switching. We found that the
compliance current Icomp is a critical parameter for reducing IR-values. We
therefore introduced an improved, simple, easy to use Icomp-limiter that
stabilizes the forming process by drastically decreasing current overflow, in
order to precisely control the Icomp- and subsequent IR-values.Comment: 15 pages, 4 figure
Neutrino masses along with fermion mass hierarchy
Recently a new mechanism has been proposed to cure the problem of fermion
mass hierarchy in the Standard Model (SM) model. In this scenario, all SM
charged fermions other than top quark arise from higher dimensional operators
involving the SM Higgs field. This model also predicted some interesting
phenomenology of the Higgs boson. We generalize this model to accommodate
neutrino masses (Dirac & Majorana) and also obtain the mixing pattern in the
leptonic sector. To generate neutrino masses, we add extra three right handed
neutrinos in this model.Comment: 20 pages, the content on results and phenomenology have been
expanded, a new section on UV completion of the model has been added and also
some new references, this version has been accepted by Physical Review
Ammonia Imaging of the Disks in the NGC 1333 IRAS 4A Protobinary System
The NGC 1333 IRAS 4A protobinary was observed in the ammonia (2, 2) and (3,
3) lines and in the 1.3 cm continuum with a high resolution (about 1.0 arcsec).
The ammonia maps show two compact sources, one for each protostar, and they are
probably protostellar accretion disks. The disk associated with IRAS 4A2 is
seen nearly edge-on and shows an indication of rotation. The A2 disk is
brighter in the ammonia lines but dimmer in the dust continuum than its sibling
disk, with the ammonia-to-dust flux ratios different by about an order of
magnitude. This difference suggests that the twin disks have surprisingly
dissimilar characters, one gas-rich and the other dusty. The A2 disk may be
unusually active or hot, as indicated by its association with water vapor
masers. The existence of two very dissimilar disks in a binary system suggests
that the formation process of multiple systems has a controlling agent lacking
in the isolated star formation process and that stars belonging to a multiple
system do not necessarily evolve in phase with each other
- …