1,310 research outputs found

    Electrochemical Investigation of High-Performance Dye-Sensitized Solar Cells Based on Molybdenum for Preparation of Counter Electrode

    Get PDF
    In order to improve the photocurrent conversion efficiency of dye-sensitized solar cells (DSSCs), we studied an alternative conductor for the counter electrode and focused on molybdenum (Mo) instead of conventional fluorine-doped tin oxide (FTO). Because Mo has a similar work function to FTO for band alignment, better formability of platinum (Pt), and a low electric resistance, using a counter electrode made of Mo instead of FTO lead to the enhancement of the catalytic reaction of the redox couple, reduce the interior resistance of the DSSCs, and prevent energy-barrier formation. Using electrical measurements under a 1-sun condition (100 mW/cm(2), AM 1.5), we determined that the fill factor (FF) and photocurrent conversion efficiency (eta) of DSSCs with a Mo electrode were respectively improved by 7.75% and 5.59% with respect to those of DSSCs with an FTO electrode. Moreover, we have investigated the origin of the improved performance through surface morphology analyses such as scanning electron microscopy and electrochemical analyses including cyclic voltammetry and impedance spectroscopy

    Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing

    Get PDF
    We describe a method of fabricating ferroelectric beta-type poly(vinylidene fluoride) (PVDF) thin films on Au substrate by the humidity controlled spin casting combined with rapid thermal treatment. Our method produces thin uniform ferroelectric PVDF film with ordered beta crystals consisting of characteristic needlelike microdomains. A capacitor with a 160 nm thick ferroelectric PVDF film exhibits the remanent polarization and coercive voltage of similar to 7.0 mu C/cm(2) and 8 V, respectively, with the temperature stability of up to 160 degrees C. A ferroelectric field effect transistor also shows a drain current bistablility of 100 at zero gate voltage with +/- 20 V gate voltage sweep. (C) 2008 American Institute of Physicsopen485

    Journey of Mesenchymal Stem Cells for Homing: Strategies to Enhance Efficacy and Safety of Stem Cell Therapy

    Get PDF
    Human mesenchymal stem cells (MSCs) communicate with other cells in the human body and appear to “home” to areas of injury in response to signals of cellular damage, known as homing signals. This review of the state of current research on homing of MSCs suggests that favorable cellular conditions and the in vivo environment facilitate and are required for the migration of MSCs to the site of insult or injury in vivo. We review the current understanding of MSC migration and discuss strategies for enhancing both the environmental and cellular conditions that give rise to effective homing of MSCs. This may allow MSCs to quickly find and migrate to injured tissues, where they may best exert clinical benefits resulting from improved homing and the presence of increased numbers of MSCs

    Valley-Polarized Interlayer Conduction of Anisotropic Dirac Fermions in SrMnBi2

    Get PDF
    We report the valley-selective interlayer conduction of SrMnBi2 under in-plane magnetic fields. The c-axis resistivity of SrMnBi2 shows clear angular magnetoresistance oscillations indicating coherent interlayer conduction. Strong fourfold variation of the coherent peak in the c-axis resistivity reveals that the contribution of each Dirac valley is significantly modulated by the in-plane field orientation. This originates from anisotropic Dirac Fermi surfaces with strong disparity in the momentum-dependent interlayer coupling. Furthermore, we found a signature of broken valley symmetry at high magnetic fields. These findings demonstrate that a quasi-two-dimensional anisotropic Dirac system can host a valley-polarized interlayer current through magnetic valley control. © 2014 American Physical Society.open1

    Development of a wireless displacement measurement system using acceleration responses

    Get PDF
    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.open3

    Exclusive Use of Air as Gas Tamponade in Rhegmatogenous Retinal Detachment

    Get PDF
    Purpose. To investigate outcomes of vitrectomy for rhegmatogenous retinal detachment (RRD) using air exclusively as the gas tamponade. Methods. This retrospective, interventional, consecutive case series involved reviewing medical records of patients that underwent vitrectomy and gas tamponade for RRD between January 2013 and December 2015. Patients whose eyes were treated exclusively with air tamponade since July 2014 were assigned to the air group, while those treated with heterogeneous gas agents before June 2014 were assigned to the control group. The primary outcome was the primary reattachment rate. Best-corrected visual acuity (BCVA) and duration to detect redetachments were assigned as the secondary outcomes. Results. The air group and the control group included 71 and 72 eyes, respectively. The primary reattachment rate was 94.4% in the air group and there was no significant difference with 94.4% in the control group (p=0.951). BCVA was significantly better in the air group at 1 month (p=0.021) but not at 3 months postoperatively (p=0.561). Redetachments were recognized earlier in the air group (9.3 ± 0.5 days) compared with those in the control group (21.3 ± 7.4 days) (p=0.041). Conclusions. In cases of simple RRD with sufficient removal of subretinal fluid, air could be considered for use as gas tamponade. This trial is registered with KCT0002358

    Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice

    Get PDF
    HemoHIM (a new herbal preparation of three edible herbs: Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe) was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100 mg/kg) once a day for 4 weeks. Diabetes was induced by single injection of streptozotocin (STZ, 200 mg/kg, i.p.). In diabetic mice, HemoHIM effectively improved hyperglycemia and glucose tolerance compared to the diabetic control group as well as elevated plasma insulin levels with preservation of insulin staining in pancreatic -cells. HemoHIM treatment restored thymus weight, white blood cells, lymphocyte numbers, and splenic lymphocyte populations (CD4 + T and CD8 + T), which were reduced in diabetic mice, as well as IFN-production in response to Con A stimulation. These results indicate that HemoHIM may have potential as a glucose-lowering and immunomodulatory agent by enhancing the immune function of pancreatic -cells in STZ-induced diabetic mice
    corecore