1,247 research outputs found

    CDK7 Regulates the Mitochondrial Localization of a Tail-Anchored Proapoptotic Protein, Hid

    Get PDF
    SummaryThe mitochondrial outer membrane is a major site of apoptosis regulation across phyla. Human and C. elegans Bcl-2 family proteins and Drosophila Hid require the C-terminal tail-anchored (TA) sequence in order to insert into the mitochondrial membrane, but it remains unclear whether cytosolic proteins actively regulate the mitochondrial localization of these proteins. Here, we report that the cdk7 complex regulates the mitochondrial localization of Hid and its ability to induce apoptosis. We identified cdk7 through an in vivo RNAi screen of genes required for cell death. Although CDK7 is best known for its role in transcription and cell-cycle progression, a hypomorphic cdk7 mutant suppressed apoptosis without impairing these other known functions. In this cdk7 mutant background, Hid failed to localize to the mitochondria and failed to bind to recombinant inhibitors of apoptosis (IAPs). These findings indicate that apoptosis is promoted by a newly identified function of CDK7, which couples the mitochondrial localization and IAP binding of Hid

    Toward a Standardized Strategy of Clinical Metabolomics for the Advancement of Precision Medicine

    Get PDF
    Despite the tremendous success, pitfalls have been observed in every step of a clinical metabolomics workflow, which impedes the internal validity of the study. Furthermore, the demand for logistics, instrumentations, and computational resources for metabolic phenotyping studies has far exceeded our expectations. In this conceptual review, we will cover inclusive barriers of a metabolomics-based clinical study and suggest potential solutions in the hope of enhancing study robustness, usability, and transferability. The importance of quality assurance and quality control procedures is discussed, followed by a practical rule containing five phases, including two additional "pre-pre-" and "post-post-" analytical steps. Besides, we will elucidate the potential involvement of machine learning and demonstrate that the need for automated data mining algorithms to improve the quality of future research is undeniable. Consequently, we propose a comprehensive metabolomics framework, along with an appropriate checklist refined from current guidelines and our previously published assessment, in the attempt to accurately translate achievements in metabolomics into clinical and epidemiological research. Furthermore, the integration of multifaceted multi-omics approaches with metabolomics as the pillar member is in urgent need. When combining with other social or nutritional factors, we can gather complete omics profiles for a particular disease. Our discussion reflects the current obstacles and potential solutions toward the progressing trend of utilizing metabolomics in clinical research to create the next-generation healthcare system.11Ysciescopu

    TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection

    Get PDF
    Background: We have previously shown that toll-like receptor 3 (TLR3)-mediated signaling plays an important role in the induction of innate cytokine responses to Theiler\u27s murine encephalomyelitis virus (TMEV) infection. In addition, cytokine levels produced after TMEV infection are significantly higher in the glial cells of susceptible SJL mice compared to those of resistant C57BL/6 mice. However, it is not known whether TLR3-mediated signaling plays a protective or pathogenic role in the development of demyelinating disease. Methods: SJL/J and B6; 129S-Tlr3(tm1Flv)/J (TLR3KO-B6) mice, and TLR3KO-SJL mice that TLR3KO-B6 mice were backcrossed to SJL/J mice for 6 generations were infected with Theiler\u27s murine encephalomyelitis virus (2 x 10(5) PFU) with or without treatment with 50 mu g of poly IC. Cytokine production and immune responses in the CNS and periphery of infected mice were analyzed. Results: We investigated the role of TLR3-mediated signaling in the protection and pathogenesis of TMEV-induced demyelinating disease. TLR3KO-B6 mice did not develop demyelinating disease although they displayed elevated viral loads in the CNS. However, TLR3KO-SJL mice displayed increased viral loads and cellular infiltration in the CNS, accompanied by exacerbated development of demyelinating disease, compared to the normal littermate mice. Late, but not early, anti-viral CD4(+) and CD8(+) T cell responses in the CNS were compromised in TLR3KO-SJL mice. However, activation of TLR3 with poly IC prior to viral infection also exacerbated disease development, whereas such activation after viral infection restrained disease development. Activation of TLR3 signaling prior to viral infection hindered the induction of protective IFN-gamma-producing CD4(+) and CD8(+) T cell populations. In contrast, activation of these signals after viral infection improved the induction of IFN-gamma-producing CD4(+) and CD8(+) T cells. In addition, poly IC-pretreated mice displayed elevated PDL-1 and regulatory FoxP3(+) CD4+ T cells in the CNS, while poly IC-post-treated mice expressed reduced levels of PDL-1 and FoxP3(+) CD4(+) T cells. Conclusions: These results suggest that TLR3-mediated signaling during viral infection protects against demyelinating disease by reducing the viral load and modulating immune responses. In contrast, premature activation of TLR3 signal transduction prior to viral infection leads to pathogenesis via over-activation of the pathogenic immune response

    Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target

    Get PDF
    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of lambda similar to 1 mu mopen

    Life extension in Drosophila by feeding a drug

    Get PDF
    We report that feeding Drosophila throughout adulthood with 4-phenylbutyrate (PBA) can significantly increase lifespan, without diminution of locomotor vigor, resistance to stress, or reproductive ability. Treatment for a limited period, either early or late in adult life, is also effective. Flies fed PBA show a global increase in histone acetylation as well as a dramatically altered pattern of gene expression, including induction or repression of numerous genes. The delay in aging may result from the altered physiological state

    In vivo and in vitro studies of Mgs1 suggest a link between genome instability and Okazaki fragment processing

    Get PDF
    The non-essential MGS1 gene of Saccharomyces cerevisiae is highly conserved in eukaryotes and encodes an enzyme containing both DNA-dependent ATPase and DNA annealing activities. MGS1 appears to function in post-replicational repair processes that contribute to genome stability. In this study, we identified MGS1 as a multicopy suppressor of the temperature-sensitive dna2Δ405N mutation, a DNA2 allele lacking the N-terminal 405 amino acid residues. Mgs1 stimulates the structure-specific nuclease activity of Rad27 (yeast Fen1 or yFen1) in an ATP-dependent manner. ATP binding but not hydrolysis was sufficient for the stimulatory effect of Mgs1, since non-hydrolyzable ATP analogs are as effective as ATP. Suppression of the temperature-sensitive growth defect of dna2Δ405N required the presence of a functional copy of RAD27, indicating that Mgs1 suppressed the dna2Δ405N mutation by increasing the activity of yFen1 (Rad27) in vivo. Our results provide in vivo and in vitro evidence that Mgs1 is involved in Okazaki fragment processing by modulating Fen1 activity. The data presented raise the possibility that the absence of MGS1 may impair the processing of Okazaki fragments, leading to genomic instability

    Anti-malarial activity of 6-(8'Z-pentadecenyl)-salicylic acid from Viola websteri in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Petroleum ether extracts of <it>Viola websteri </it>Hemsl (Violaceae) were reported to have anti-plasmodial activity against <it>Plasmodium falciparum in vitro</it>, with this activity being largely attributable to 6-(8'Z-pentadecenyl)-salicylic acid (6-SA).</p> <p>Methods</p> <p>The schizontocidal activity of 6-SA on early <it>Plasmodium berghei </it>infections was evaluated in a four-day test. The possible 'repository' activity of 6-SA was assessed using the method described by Peters. The median lethal dose (LD<sub>50</sub>) of 6-SA, when given intraperitoneally, was also determined using uninfected ICR mice and the method of Lorke.</p> <p>Results</p> <p>In the present study, 6-SA was found to have anti-malarial activity <it>in vivo</it>, when tested against <it>P. berghei </it>in mice. 6-SA at 5, 10 and 25 mg/kg·day exhibited a significant blood schizontocidal activity in four-day early infections, repository evaluations and established infections with a significant mean survival time comparable to that of the standard drug, chloroquine (5 mg/kg·day).</p> <p>Conclusion</p> <p>6-SA possesses a moderate anti-malarial activity that could be exploited for malaria therapy.</p

    The potential of non-movement behavior observation method for detection of sick broiler chickens

    Get PDF
    The poultry industry, which produces excellent sources of protein, suffers enormous economic damage from diseases. To solve this problem, research is being conducted on the early detection of infection according to the behavioral characteristics of poultry. The purpose of this study was to evaluate the potential of a non-movement behavior observation method to detect sick chickens. Forty 1-day-old Ross 308 males were used in the experiments, and an isolator equipped with an Internet Protocol (IP) camera was fabricated for observation. The chickens were inoculated with Salmonella enterica serovar Gallinarum A18-GCVP-014, the causative agent of fowl typhoid (FT), at 14 days of age, which is a vulnerable period for FT infection. The chickens were continuously observed with an IP camera for 2 weeks after inoculation, chickens that did not move for more than 30 minutes were detected and marked according to the algorithm. FT infection was confirmed based on clinical symptoms, analysis of cardiac, spleen and liver lesion scores, pathogen re-isolation, and serological analysis. As a result, clinical symptoms were first observed four days after inoculation, and dead chickens were observed on day six. Eleven days after inoculation, the number of clinical symptoms gradually decreased, indicating a state of recovery. For lesion scores, dead chickens scored 3.57 and live chickens scored 2.38. Pathogens were re-isolated in 37 out of 40 chickens, and hemagglutination test was positive in seven out of 26 chickens. The IP camera applied with the algorithm detected about 83% of the chickens that died in advance through non-movement behavior observation. Therefore, observation of non-movement behavior is one of the ways to detect infected chickens in advance, and it appears to have potential for the development of remote broiler management system

    High resolution crystal structure of PedB: a structural basis for the classification of pediocin-like immunity proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pediocin-like bacteriocins, ribosomally-synthesized antimicrobial peptides, are generally coexpressed with cognate immunity proteins in order to protect the bacteriocin-producer from its own bacteriocin. As a step for understanding the mode of action of immunity proteins, we determined the crystal structure of PedB, a pediocin-like immunity protein conferring immunity to pediocin PP-1.</p> <p>Results</p> <p>The 1.6 Å crystal structure of PedB reveals that PedB consists of an antiparallel four-helix bundle with a flexible C-terminal end. PedB shows structural similarity to an immunity protein against enterocin A (EntA-im) but some disparity to an immunity protein against carnobacteriocin B2 (ImB2) in both the C-terminal conformation and the local structure constructed by α3, α4, and their connecting loop. Structure-inspired mutational studies reveal that deletion of the last seven residues of the C-terminus of PedB almost abolished its immunity activity.</p> <p>Conclusion</p> <p>The fact that PedB, EntA-im, and ImB2 share a four-helix bundle structure strongly suggests the structural conservation of this motif in the pediocin-like immunity proteins. The significant difference in the core structure and the C-terminal conformation provides a structural basis for the classification of pediocin-like immunity proteins. Our mutational study using C-terminal-shortened PedBs and the investigation of primary sequence of the C-terminal region, propose that several polar or charged residues in the extreme C-terminus of PedB which is crucial for the immunity are involved in the specific recognition of pediocin PP-1.</p
    corecore