13,421 research outputs found
StarGO: A New Method to Identify the Galactic Origins of Halo Stars
We develop a new method StarGO (Stars' Galactic Origin) to identify the
galactic origins of halo stars using their kinematics. Our method is based on
self-organizing map (SOM), which is one of the most popular unsupervised
learning algorithms. StarGO combines SOM with a novel adaptive group
identification algorithm with essentially no free parameters. In order to
evaluate our model, we build a synthetic stellar halo from mergers of nine
satellites in the Milky Way. We construct the mock catalogue by extracting a
heliocentric volume of 10 kpc from our simulations and assigning expected
observational uncertainties corresponding to bright stars from Gaia DR2 and
LAMOST DR5. We compare the results from StarGO against that from a
Friends-of-Friends (FoF) based method in the space of orbital energy and
angular momentum. We show that StarGO is able to systematically identify more
satellites and achieve higher number fraction of identified stars for most of
the satellites within the extracted volume. When applied to data from Gaia DR2,
StarGO will enable us to reveal the origins of the inner stellar halo in
unprecedented detail.Comment: 11 pages, 7 figures, Accepted for publication in Ap
Redistricting: Drawing the Line
We develop methods to evaluate whether a political districting accurately
represents the will of the people. To explore and showcase our ideas, we
concentrate on the congressional districts for the U.S. House of
representatives and use the state of North Carolina and its redistrictings
since the 2010 census. Using a Monte Carlo algorithm, we randomly generate over
24,000 redistrictings that are non-partisan and adhere to criteria from
proposed legislation. Applying historical voting data to these random
redistrictings, we find that the number of democratic and republican
representatives elected varies drastically depending on how districts are
drawn. Some results are more common, and we gain a clear range of expected
election outcomes. Using the statistics of our generated redistrictings, we
critique the particular congressional districtings used in the 2012 and 2016 NC
elections as well as a districting proposed by a bipartisan redistricting
commission. We find that the 2012 and 2016 districtings are highly atypical and
not representative of the will of the people. On the other hand, our results
indicate that a plan produced by a bipartisan panel of retired judges is highly
typical and representative. Since our analyses are based on an ensemble of
reasonable redistrictings of North Carolina, they provide a baseline for a
given election which incorporates the geometry of the state's population
distribution.Comment: Corrected typos from previous version; added new plots showing
stability; corrected error in EG plots and analysi
Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles
We have used molecular dynamics simulations to investigate interaction of H2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg^-1. On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K
The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development
We present a new reactive force field ReaxFFHBN derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFFHBN has been tested against quantum calculation data for B–H, B–B, and B–N bond dissociations and for H–B–H, B–N–B, and N–B–N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFFHBN for B–N–H systems is also tested for (i) H–B and H–B bond energies as a function of out of plane in H–B(NH2)3 and H–N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFFHBN gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFFHBN is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms
Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption
Collision and adsorption of hydrogen with high incident kinetic energies on a single-walled boron nitride (BN) nanotube have been investigated. Molecular-dynamics (MD) simulations indicate that at incident energies below 14 eV hydrogen bounces off the BN nanotube wall. On the other hand, at incident energies between 14 and 22 eV each hydrogen molecule is dissociated at the exterior wall to form two hydrogen atoms, but only one of them goes through the wall. However, at the incident energies between 23 and 26 eV all of the hydrogen atoms dissociated at the exterior wall are found to be capable of going inside the nanotube and then to recombine to form hydrogen molecules inside the nanotube. Consequently, it is determined that hydrogen should have the incident energy >22 eV to go inside the nanotube. On the other hand, we find that the collisions using the incident energies >26 eV could result in damaging the nanotube structures. In addition our MD simulations find that hydrogen atoms dissociated at the wall cannot bind to either boron or nitrogen atoms in the interior wall of the nanotube
Reducing Selection Bias in Analyzing Longitudinal Health Data with High Mortality Rates
Two longitudinal regression models, one parametric and one nonparametric, are developed to reduce selection bias when analyzing longitudinal health data with high mortality rates. The parametric mixed model is a two-step linear regression approach, whereas the nonparametric mixed-effects regression model uses a retransformation method to handle random errors across time
Nanopores of carbon nanotubes as practical hydrogen storage media
We report on hydrogen desorption mechanisms in the nanopores of multiwalled carbon nanotubes (MWCNTs). The as-grown MWCNTs show continuous walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating the nanotubes with oxygen plasma to create nanopores in the MWCNTs, we observed the appearance of a new hydrogen desorption peak in the 300–350 K range. Furthermore, the calculations of density functional theory and molecular dynamics simulations confirmed that this peak could be attributed to the hydrogen that is physically adsorbed inside nanopores whose diameter is approximately 1 nm. Thus, we demonstrated that 1 nm nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications
Landau-Zener-St\"{u}ckelberg Interference of Microwave Dressed States of a Superconducting Phase Qubit
We present the first observation of Landau-Zener-St\"{u}ckelberg (LZS)
interference of the dressed states arising from an artificial atom, a
superconducting phase qubit, interacting with a microwave field. The dependence
of LZS interference fringes on various external parameters and the initial
state of the qubit agrees quantitatively very well with the theoretical
prediction. Such LZS interferometry between the dressed states enables us to
control the quantum states of a tetrapartite solid-state system with ease,
demonstrating the feasibility of implementing efficient multipartite quantum
logic gates with this unique approach.Comment: 6 pages, 3 figures To appear in Physical Review B(R
- …