55 research outputs found

    Enhancing Motor Imagery Decoding in Brain Computer Interfaces using Riemann Tangent Space Mapping and Cross Frequency Coupling

    Full text link
    Objective: Motor Imagery (MI) serves as a crucial experimental paradigm within the realm of Brain Computer Interfaces (BCIs), aiming to decoding motor intentions from electroencephalogram (EEG) signals. Method: Drawing inspiration from Riemannian geometry and Cross-Frequency Coupling (CFC), this paper introduces a novel approach termed Riemann Tangent Space Mapping using Dichotomous Filter Bank with Convolutional Neural Network (DFBRTS) to enhance the representation quality and decoding capability pertaining to MI features. DFBRTS first initiates the process by meticulously filtering EEG signals through a Dichotomous Filter Bank, structured in the fashion of a complete binary tree. Subsequently, it employs Riemann Tangent Space Mapping to extract salient EEG signal features within each sub-band. Finally, a lightweight convolutional neural network is employed for further feature extraction and classification, operating under the joint supervision of cross-entropy and center loss. To validate the efficacy, extensive experiments were conducted using DFBRTS on two well-established benchmark datasets: the BCI competition IV 2a (BCIC-IV-2a) dataset and the OpenBMI dataset. The performance of DFBRTS was benchmarked against several state-of-the-art MI decoding methods, alongside other Riemannian geometry-based MI decoding approaches. Results: DFBRTS significantly outperforms other MI decoding algorithms on both datasets, achieving a remarkable classification accuracy of 78.16% for four-class and 71.58% for two-class hold-out classification, as compared to the existing benchmarks.Comment: 22 pages, 7 figure

    Improved Motor Imagery Classification Using Adaptive Spatial Filters Based on Particle Swarm Optimization Algorithm

    Full text link
    As a typical self-paced brain-computer interface (BCI) system, the motor imagery (MI) BCI has been widely applied in fields such as robot control, stroke rehabilitation, and assistance for patients with stroke or spinal cord injury. Many studies have focused on the traditional spatial filters obtained through the common spatial pattern (CSP) method. However, the CSP method can only obtain fixed spatial filters for specific input signals. Besides, CSP method only focuses on the variance difference of two types of electroencephalogram (EEG) signals, so the decoding ability of EEG signals is limited. To obtain more effective spatial filters for better extraction of spatial features that can improve classification to MI-EEG, this paper proposes an adaptive spatial filter solving method based on particle swarm optimization algorithm (PSO). A training and testing framework based on filter bank and spatial filters (FBCSP-ASP) is designed for MI EEG signal classification. Comparative experiments are conducted on two public datasets (2a and 2b) from BCI competition IV, which show the outstanding average recognition accuracy of FBCSP-ASP. The proposed method has achieved significant performance improvement on MI-BCI. The classification accuracy of the proposed method has reached 74.61% and 81.19% on datasets 2a and 2b, respectively. Compared with the baseline algorithm (FBCSP), the proposed algorithm improves 11.44% and 7.11% on two datasets respectively. Furthermore, the analysis based on mutual information, t-SNE and Shapley values further proves that ASP features have excellent decoding ability for MI-EEG signals, and explains the improvement of classification performance by the introduction of ASP features.Comment: 25 pages, 8 figure

    Research on CVDs Prediction and Early Warning Techniques in Healthcare Monitoring System

    Get PDF
    Abstract-Chronic diseases are gradually becoming the principal factors of harm to people's health. Fortunately, the development of e-health provides a novel thought for chronic disease prevention and treatment. This paper focuses on the research of cardiovascular disease (CVDs) prevention and early warning techniques using e-health and data mining. In this paper, we will use weighted associative classification algorithm to model the data in healthcare database to determine the level of cardiovascular risk. Besides, on the basis of data mining and knowledge discovery, intelligent warning mechanisms are proposed to provide different services to patients with different levels of risk. The experimental results show that the used classification algorithm is a more effective mining algorithm in the field of healthcare with higher accuracy and better comprehension. Our study is of definite significance to help control risk level of CVDs patients

    Effect of Maillard Reaction on Tropomyosin Immunoreactivity in Mactra veneriformis

    Get PDF
    In this study, xylose and arabinose were subjected separately to Maillard reaction with a crude extract of Mactra veneriformis under dry-heating conditions. The immunoreactivity and digestion properties of the Maillard reaction products (MRPs) were analyzed, finding that the Maillard reaction could reduce the immunoreactivity of allergens derived from Mactra veneriformis, increase the continuous digestion rate of the crude extract in simulated gastrointestinal fluid, and reduce the particle diameter of the digestion products. After that, TM in the MRPs was separated and purified, and its structural characteristics and immunoreactivity were analyzed. The results showed that the α-helix content of TM decreased and the β-sheet, β-turn, and random coil contents increased after the Maillard reaction, the surface hydrophobicity increased, and the spatial structure changed, which eventually led to a reduction in the immunoreactivity of TM. This study provides a theoretical basis for the development of hypoallergenic clam products

    Time and frequency domain joint channel estimation in multi-carrier multi-branch systems

    No full text
    Channel estimation is of great importance in many wireless communication systems, since it influences the overall performance of a system significantly. Especially in multi-user and/or multi-antenna systems, i.e. generally in multi-branch systems, the requirements on channel estimation are very high, since the training signals or so called pilots that are used for channel estimation suffer from multiple access interference. Recently, in the context with such systems more and more attention is paid to concepts for joint channel estimation (JCE) which have the capability to eliminate the multiple access interference and also the interference between the channel coefficients. The performance of JCE can be evaluated in noise limited systems by the SNR degradation and in interference limited systems by the variation coefficient. Theoretical analysis carried out in this thesis verifies that both performance criteria are closely related to the patterns of the pilots used for JCE, no matter the signals are represented in the time domain or in the frequency domain. Optimum pilots like disjoint pilots, Walsh code based pilots or CAZAC code based pilots, whose constructions are described in this thesis, do not show any SNR degradation when being applied to multi-branch systems. It is shown that optimum pilots constructed in the time domain become optimum pilots in the frequency domain after a discrete Fourier transformation. Correspondingly, optimum pilots in the frequency domain become optimum pilots in the time domain after an inverse discrete Fourier transformation. However, even for optimum pilots different variation coefficients are obtained in interference limited systems. Furthermore, especially for OFDM-based transmission schemes the peak-to-average power ratio (PAPR) of the transmit signal is an important decision criteria for choosing the most suitable pilots. CAZAC code based pilots are the only pilots among the regarded pilot constructions that result in a PAPR of 0 dB for the transmit signal that origins in the transmitted pilots. When summarizing the analysis regarding the SNR degradation, the variation coefficient and the PAPR with respect to one single service area and considering the impact due to interference from other adjacent service areas that occur due to a certain choice of the pilots, one can conclude that CAZAC codes are the most suitable pilots for the application in JCE of multi-carrier multi-branch systems, especially in the case if CAZAC codes that origin in different mother codes are assigned to different adjacent service areas. The theoretical results of the thesis are verified by simulation results. The choice of the parameters for the frequency domain or time domain JCE is oriented towards the evaluated implementation complexity. According to the chosen parameterization of the regarded OFDM-based and FMT-based systems it is shown that a frequency domain JCE is the best choice for OFDM and a time domain JCE is the best choice for FMT applying CAZAC codes as pilots. The results of this thesis can be used as a basis for further theoretical research and also for future JCE implementation in wireless systems.Gemeinsame Kanalschätzung im Zeit- und Frequenzbereich für Mehrträterübertragungsverfahren mit mehreren Übertragungszweige

    Time and frequency domain joint channel estimation in multi-carrier multi-branch systems

    Get PDF
    Channel estimation is of great importance in many wireless communication systems, since it influences the overall performance of a system significantly. Especially in multi-user and/or multi-antenna systems, i.e. generally in multi-branch systems, the requirements on channel estimation are very high, since the training signals or so called pilots that are used for channel estimation suffer from multiple access interference. Recently, in the context with such systems more and more attention is paid to concepts for joint channel estimation (JCE) which have the capability to eliminate the multiple access interference and also the interference between the channel coefficients. The performance of JCE can be evaluated in noise limited systems by the SNR degradation and in interference limited systems by the variation coefficient. Theoretical analysis carried out in this thesis verifies that both performance criteria are closely related to the patterns of the pilots used for JCE, no matter the signals are represented in the time domain or in the frequency domain. Optimum pilots like disjoint pilots, Walsh code based pilots or CAZAC code based pilots, whose constructions are described in this thesis, do not show any SNR degradation when being applied to multi-branch systems. It is shown that optimum pilots constructed in the time domain become optimum pilots in the frequency domain after a discrete Fourier transformation. Correspondingly, optimum pilots in the frequency domain become optimum pilots in the time domain after an inverse discrete Fourier transformation. However, even for optimum pilots different variation coefficients are obtained in interference limited systems. Furthermore, especially for OFDM-based transmission schemes the peak-to-average power ratio (PAPR) of the transmit signal is an important decision criteria for choosing the most suitable pilots. CAZAC code based pilots are the only pilots among the regarded pilot constructions that result in a PAPR of 0 dB for the transmit signal that origins in the transmitted pilots. When summarizing the analysis regarding the SNR degradation, the variation coefficient and the PAPR with respect to one single service area and considering the impact due to interference from other adjacent service areas that occur due to a certain choice of the pilots, one can conclude that CAZAC codes are the most suitable pilots for the application in JCE of multi-carrier multi-branch systems, especially in the case if CAZAC codes that origin in different mother codes are assigned to different adjacent service areas. The theoretical results of the thesis are verified by simulation results. The choice of the parameters for the frequency domain or time domain JCE is oriented towards the evaluated implementation complexity. According to the chosen parameterization of the regarded OFDM-based and FMT-based systems it is shown that a frequency domain JCE is the best choice for OFDM and a time domain JCE is the best choice for FMT applying CAZAC codes as pilots. The results of this thesis can be used as a basis for further theoretical research and also for future JCE implementation in wireless systems.Gemeinsame Kanalschätzung im Zeit- und Frequenzbereich für Mehrträterübertragungsverfahren mit mehreren Übertragungszweige

    User Association and Power Control for Energy Efficiency Maximization in M2M-Enabled Uplink Heterogeneous Networks with NOMA

    No full text
    To support a vast number of devices with less energy consumption, we propose a new user association and power control scheme for machine to machine enabled heterogeneous networks with non-orthogonal multiple access (NOMA), where a mobile user (MU) acting as a machine-type communication gateway can decode and forward both the information of machine-type communication devices and its own data to the base station (BS) directly. MU association and power control are jointly considered in the formulated as optimization problem for energy efficiency (EE) maximization under the constraints of minimum data rate requirements of MUs. A many-to-one MU association matching algorithm is firstly proposed based on the theory of matching game. By taking swap matching operations among MUs, BSs, and sub-channels, the original problem can be solved by dealing with the EE maximization for each sub-channel. Then, two power control algorithms are proposed, where the tools of sequential optimization, fractional programming, and exhaustive search have been employed. Simulation results are provided to demonstrate the optimality properties of our algorithms under different parameter settings
    corecore