118 research outputs found

    Theory of Robustness of Irreversible Differentiation in a Stem Cell System: Chaos hypothesis

    Full text link
    Based on extensive study of a dynamical systems model of the development of a cell society, a novel theory for stem cell differentiation and its regulation is proposed as the ``chaos hypothesis''. Two fundamental features of stem cell systems - stochastic differentiation of stem cells and the robustness of a system due to regulation of this differentiation - are found to be general properties of a system of interacting cells exhibiting chaotic intra-cellular reaction dynamics and cell division, whose presence does not depend on the detail of the model. It is found that stem cells differentiate into other cell types stochastically due to a dynamical instability caused by cell-cell interactions, in a manner described by the Isologous Diversification theory. This developmental process is shown to be stable not only with respect to molecular fluctuations but also with respect to removal of cells. With this developmental process, the irreversible loss of multipotency accompanying the change from a stem cell to a differentiated cell is shown to be characterized by a decrease in the chemical diversity in the cell and of the complexity of the cellular dynamics. The relationship between the division speed and this loss of multipotency is also discussed. Using our model, some predictions that can be tested experimentally are made for a stem cell system.Comment: 31 pages, 10 figures, submitted to Jour. Theor. Bio

    Pluripotency, differentiation, and reprogramming: A gene expression dynamics model with epigenetic feedback regulation

    Full text link
    Characterization of pluripotent states, in which cells can both self-renew and differentiate, and the irreversible loss of pluripotency are important research areas in developmental biology. In particular, an understanding of these processes is essential to the reprogramming of cells for biomedical applications, i.e., the experimental recovery of pluripotency in differentiated cells. Based on recent advances in dynamical-systems theory for gene expression, we propose a gene-regulatory-network model consisting of several pluripotent and differentiation genes. Our results show that cellular-state transition to differentiated cell types occurs as the number of cells increases, beginning with the pluripotent state and oscillatory expression of pluripotent genes. Cell-cell signaling mediates the differentiation process with robustness to noise, while epigenetic modifications affecting gene expression dynamics fix the cellular state. These modifications ensure the cellular state to be protected against external perturbation, but they also work as an epigenetic barrier to recovery of pluripotency. We show that overexpression of several genes leads to the reprogramming of cells, consistent with the methods for establishing induced pluripotent stem cells. Our model, which involves the inter-relationship between gene expression dynamics and epigenetic modifications, improves our basic understanding of cell differentiation and reprogramming

    Universal relationship in gene-expression changes for cells in steady-growth state

    Full text link
    Cells adapt to different conditions by altering a vast number of components, which is measurable using transcriptome analysis. Given that a cell undergoing steady growth is constrained to sustain each of its internal components, the abundance of all the components in the cell has to be roughly doubled during each cell division event. From this steady-growth constraint, expression of all genes is shown to change along a one-parameter curve in the state space in response to the environmental stress. This leads to a global relationship that governs the cellular state: By considering a relatively moderate change around a steady state, logarithmic changes in expression are shown to be proportional across all genes, upon alteration of stress strength, with the proportionality coefficient given by the change in the growth rate of the cell. This theory is confirmed by transcriptome analysis of Escherichia Coli in response to several stresses.Comment: 7 pages (5 figures) + 2 Supplementary pages (figures

    Chaotic expression dynamics implies pluripotency: when theory and experiment meet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During normal development, cells undergo a unidirectional course of differentiation that progressively decreases the number of cell types they can potentially become. Pluripotent stem cells can differentiate into several types of cells, but terminally differentiated cells cannot differentiate any further. A fundamental problem in stem cell biology is the characterization of the difference in cellular states, e.g., gene expression profiles, between pluripotent stem cells and terminally differentiated cells.</p> <p>Presentation of the hypothesis</p> <p>To address the problem, we developed a dynamical systems model of cells with intracellular protein expression dynamics and interactions with each other. According to extensive simulations, cells with irregular (chaotic) oscillations in gene expression dynamics have the potential to differentiate into other cell types. During development, such complex oscillations are lost successively, leading to a loss of pluripotency. These simulation results, together with recent single-cell-level measurements in stem cells, led us to the following hypothesis regarding pluripotency: Chaotic oscillation in the expression of some genes leads to cell pluripotency and affords cellular state heterogeneity, which is supported by itinerancy over quasi-stable states. Differentiation stabilizes these states, leading to a loss of pluripotency.</p> <p>Testing the hypothesis</p> <p>To test the hypothesis, it is crucial to measure the time course of gene expression levels at the single-cell level by fluorescence microscopy and fluorescence-activated cell sorting (FACS) analysis. By analyzing the time series of single-cell-level expression data, one can distinguish whether the variation in protein expression level over time is due only to stochasticity in expression dynamics or originates from the chaotic dynamics inherent to cells, as our hypothesis predicts. By further analyzing the expression in differentiated cell types, one can examine whether the loss of pluripotency is accompanied by a loss of oscillation.</p> <p>Implications of the hypothesis</p> <p>Recovery of pluripotency from determined cells is a long-standing aspiration, from both scientific and clinical perspectives. Our hypothesis suggests a feasible route to recover the potential to differentiate, i.e., by increasing the variety of expressed genes to restore chaotic expression dynamics, as is consistent with the recent generation of induced pluripotent stem (iPS) cells.</p> <p>Reviewers</p> <p>This article was reviewed by David Krakauer, Jeroen van Zon (nominated by Rob de Boer), and Williams S. Hlavacek.</p

    Evolutionary origin of power-laws in Biochemical Reaction Network; embedding abundance distribution into topology

    Full text link
    The evolutionary origin of universal statistics in biochemical reaction network is studied, to explain the power-law distribution of reaction links and the power-law distributions of chemical abundances. Using cell models with catalytic reaction network, we find evidence that the power-law distribution in abundances of chemicals emerges by the selection of cells with higher growth speeds. Through the further evolution, this inhomogeneity in chemical abundances is shown to be embedded in the distribution of links, leading to the power-law distribution. These findings provide novel insights into the nature of network evolution in living cells.Comment: 11 pages, 3 figure

    Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential

    Get PDF
    The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems

    A short step synthesis of lespedamine

    Get PDF
    金沢大学大学院自然科学研究科生理活性物質科

    含窒素複素環化合物の光化学反応とその機構解析

    Get PDF
    金沢大学薬学部研究課題/領域番号:X00040----321706研究期間(年度):1978出典:「含窒素複素環化合物の光化学反応とその機構解析」研究成果報告書 課題番号X00040----321706(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-X00040----321706/)を加工して作
    corecore