5 research outputs found

    Controlled exploration of chemical space by machine learning of coarse-grained representations

    Full text link
    The size of chemical compound space is too large to be probed exhaustively. This leads high-throughput protocols to drastically subsample and results in sparse and non-uniform datasets. Rather than arbitrarily selecting compounds, we systematically explore chemical space according to the target property of interest. We first perform importance sampling by introducing a Markov chain Monte Carlo scheme across compounds. We then train an ML model on the sampled data to expand the region of chemical space probed. Our boosting procedure enhances the number of compounds by a factor 2 to 10, enabled by the ML model's coarse-grained representation, which both simplifies the structure-property relationship and reduces the size of chemical space. The ML model correctly recovers linear relationships between transfer free energies. These linear relationships correspond to features that are global to the dataset, marking the region of chemical space up to which predictions are reliable---a more robust alternative to the predictive variance. Bridging coarse-grained simulations with ML gives rise to an unprecedented database of drug-membrane insertion free energies for 1.3 million compounds.Comment: 9 pages, 5 figure

    In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force

    Full text link
    The partitioning of small molecules in cell membranes---a key parameter for pharmaceutical applications---typically relies on experimentally-available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force, but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400,000 compounds. The potential of mean force hereby becomes an easily accessible quantity---already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.Comment: 8 pages, 6 figures. Typos fixed, minor correction

    Broad chemical transferability in structure-based coarse-graining

    Get PDF
    Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C7_7O2_2 small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization.Comment: 15 pages, 7 figure
    corecore