3,684 research outputs found

    Dynamics aspect of subbarrier fusion reaction in light heavy ion systems

    Full text link
    Subbarrier fusion of the 7Li + 12C reaction is studied using an antisymmetrized molecular dynamics model (AMD) with an after burner, GEMINI. In AMD, 7Li shows an \alpha + t structure at its ground state and it is significantly deformed. Simulations are made near the Coulomb barrier energies, i.e., E_{cm} = 3 - 8 MeV. The total fusion cross section of the AMD + GEMINI calculations as a function of incident energy is compared to the experimental results and both are in good agreement at E_{cm} > 3 MeV. The cross section for the different residue channels of the AMD + GEMINI at E_{cm} = 5 MeV is also compared to the experimental results.Comment: Talk given by Meirong Huang at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Non-local interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws

    Get PDF
    We analyze the data stemming from a forced incompressible hydrodynamic simulation on a grid of 2048^3 regularly spaced points, with a Taylor Reynolds number of Re~1300. The forcing is given by the Taylor-Green flow, which shares similarities with the flow in several laboratory experiments, and the computation is run for ten turnover times in the turbulent steady state. At this Reynolds number the anisotropic large scale flow pattern, the inertial range, the bottleneck, and the dissipative range are clearly visible, thus providing a good test case for the study of turbulence as it appears in nature. Triadic interactions, the locality of energy fluxes, and structure functions of the velocity increments are computed. A comparison with runs at lower Reynolds numbers is performed, and shows the emergence of scaling laws for the relative amplitude of local and non-local interactions in spectral space. The scalings of the Kolmogorov constant, and of skewness and flatness of velocity increments, performed as well and are consistent with previous experimental results. Furthermore, the accumulation of energy in the small-scales associated with the bottleneck seems to occur on a span of wavenumbers that is independent of the Reynolds number, possibly ruling out an inertial range explanation for it. Finally, intermittency exponents seem to depart from standard models at high Re, leaving the interpretation of intermittency an open problem.Comment: 8 pages, 8 figure

    A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map

    Full text link
    Context. We are creating the AKARI mid-infrared all-sky diffuse maps. Through a foreground removal of the zodiacal emission, we serendipitously detected a bright residual component whose angular size is about 50 x 20 deg. at a wavelength of 9 micron. Aims. We investigate the origin and the physical properties of the residual component. Methods. We measured the surface brightness of the residual component in the AKARI mid-infrared all-sky maps. Results. The residual component was significantly detected only in 2007 January, even though the same region was observed in 2006 July and 2007 July, which shows that it is not due to the Galactic emission. We suggest that this may be a small cloud passing near the Earth. By comparing the observed intensity ratio of I_9um/I_18um with the expected intensity ratio assuming thermal equilibrium of dust grains at 1 AU for various dust compositions and sizes, we find that dust grains in the moving cloud are likely to be much smaller than typical grains that produce the bulk of the zodiacal light. Conclusions. Considering the observed date and position, it is likely that it originates in the solar coronal mass ejection (CME) which took place on 2007 January 25.Comment: 5 pages, 4 figures, accepted by Astronomy and Astrophysic

    Monte Carlo renormalization group study of the Heisenberg and XY antiferromagnet on the stacked triangular lattice and the chiral ϕ4\phi^4 model

    Full text link
    With the help of the improved Monte Carlo renormalization-group scheme, we numerically investigate the renormalization group flow of the antiferromagnetic Heisenberg and XY spin model on the stacked triangular lattice (STA-model) and its effective Hamiltonian, 2N-component chiral ϕ4\phi^4 model which is used in the field-theoretical studies. We find that the XY-STA model with the lattice size 126×144×126126\times 144 \times 126 exhibits clear first-order behavior. We also find that the renormalization-group flow of STA model is well reproduced by the chiral ϕ4\phi^4 model, and that there are no chiral fixed point of renormalization-group flow for N=2 and 3 cases. This result indicates that the Heisenberg-STA model also undergoes first-order transition.Comment: v1:15 pages, 15 figures v2:updated references v3:added comments on the higher order irrelevant scaling variables v4:added results of larger sizes v5:final version to appear in J.Phys.Soc.Jpn Vol.72, No.

    Large-scale mapping of the massive star-forming region RCW38 in the [CII] and PAH emission

    Get PDF
    We investigate the large-scale structure of the interstellar medium (ISM) around the massive star cluster RCW38 in the [CII] 158 um line and polycyclic aromatic hydrocarbon (PAH) emission. We carried out [CII] line mapping of an area of ~30'x15' for RCW~38 by a Fabry-Perot spectrometer on a 100 cm balloon-borne telescope with an angular resolution of ~1'.5. We compared the [CII] intensity map with the PAH and dust emission maps obtained by the AKARI satellite. The [CII] emission shows a highly nonuniform distribution around the cluster, exhibiting the structure widely extended to the north and the east from the center. The [CII] intensity rapidly drops toward the southwest direction, where a CO cloud appears to dominate. We decompose the 3-160 um spectral energy distributions of the surrounding ISM structure into PAH as well as warm and cool dust components with the help of 2.5-5 um spectra. We find that the [CII] emission spatially corresponds to the PAH emission better than to the dust emission, confirming the relative importance of PAHs for photo-electric heating of gas in photo-dissociation regions. A naive interpretation based on our observational results indicates that molecular clouds associated with RCW38 are located both on the side of and behind the cluster.Comment: 10 pages, 7 figures, accepted for publication in A&

    Shape Effects of Finite-Size Scaling Functions for Anisotropic Three-Dimensional Ising Models

    Full text link
    The finite-size scaling functions for anisotropic three-dimensional Ising models of size L1×L1×aL1L_1 \times L_1 \times aL_1 (aa: anisotropy parameter) are studied by Monte Carlo simulations. We study the aa dependence of finite-size scaling functions of the Binder parameter gg and the magnetization distribution function p(m)p(m). We have shown that the finite-size scaling functions for p(m)p(m) at the critical temperature change from a two-peak structure to a single-peak one by increasing or decreasing aa from 1. We also study the finite-size scaling near the critical temperature of the layered square-lattice Ising model, when the systems have a large two-dimensional anisotropy. We have found the three-dimensional and two-dimensional finite-size scaling behavior depending on the parameter which is fixed; a unified view of 3D and 2D finite-size scaling behavior has been obtained for the anisotropic 3D Ising models.Comment: 6 pages including 11 eps figures, RevTeX, to appear in J. Phys.
    corecore