598 research outputs found

    THE NEED OF REFORM IN OUR EMPLOYERS LIABILITY LAWS

    Get PDF

    Resonant Tunneling Between Quantum Hall Edge States

    Full text link
    Resonant tunneling between fractional quantum Hall edge states is studied in the Luttinger liquid picture. For the Laughlin parent states, the resonance line shape is a universal function whose width scales to zero at zero temperature. Extensive quantum Monte Carlo simulations are presented for ν=1/3\nu = 1/3 which confirm this picture and provide a parameter-free prediction for the line shape.Comment: 14 pages , revtex , IUCM93-00

    Anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft versus allograft in young patients

    Get PDF
    Objectives: Traditionally, bone-patella tendon-bone (BTB) autograft has been the gold standard graft choice for younger, athletic patients requiring ACL reconstruction. However, donor site morbidity, post-operative patella fracture, and increased operative time have led many surgeons to choose BTB allograft for their reconstructions. Opponents of allografts feel that slower healing time, higher rate of graft failure, and potential for disease transmission makes them undesirable graft choices in athletic patients. The purpose of this study is to evaluate the clinical outcomes, both subjective and objective, of young patients that who have undergone either BTB autograft or allograft reconstructions with a minimum of 2-year follow-up. Methods: One hundred and twenty patients (60 autograft, 60 allograft), age 25 and below at time of surgery, were contacted after being retrospectively identified as patients having an ACL reconstruction with either a BTB allograft or autograft by one senior surgeon. Patients were administered the Lysholm Knee Scoring Scale and IKDC Subjective Knee Evaluation questionnaires. Fifty (25 BTB autograft and 25 BTB allograft) of the 120 returned for physical examination as well as completion of a single leg hop test and laxity evaluation using a KT-1000 arthrometer evaluation. Of the 120 patients contacted, there were a total of 7 failures (5.8%) requiring revision, 6 in the allograft group (86%) and 1 in the autograft group (14%). Results: The average Lysholm scores were 89.0 and 89.56 and the average IKDC scores were 90.8 and 92.1 in the autograft and allograft groups respectively. The differences in the Lysholm scores and the IKDC scores were not significant. The single leg hop and KT-1000 scores were also not significantly different. One autograft patient had a minor motion deficit. Three allograft patients had a grade 1 Lachman and pivot glide. One autograft patient and two allograft patients had mild patellafemoral crepitus. There was no significant difference in anterior knee pain between the two groups Conclusion: There is no significant difference in patient-rated outcome between ACL reconstructions using BTB autografts versus allografts. However, the overall study group did reveal an increased failure rate requiring revision in the allograft group. © The Author(s) 2015

    Randomness at the Edge: Theory of Quantum Hall transport at filling ν=2/3\nu=2/3

    Full text link
    Current Luttinger liquid edge state theories for filling ν=2/3\nu=2/3 predict a non-universal Hall conductance, in disagreement with experiment. Upon inclusion of random edge tunnelling we find a phase transition into a new disordered-dominated edge phase. An exact solution of the random model in this phase gives a quantized Hall conductance of 2/3 and a neutral mode propagating upstream. The presence of the neutral mode changes the predicted temperature dependence for tunnelling through a point contact from T2/ν2T^{2/\nu -2} to T2T^2.Comment: 12 pages 1 postscript figure appended, REVTEX 3.

    Impurity scattering and transport of fractional Quantum Hall edge state

    Full text link
    We study the effects of impurity scattering on the low energy edge state dynamic s for a broad class of quantum Hall fluids at filling factor ν=n/(np+1)\nu =n/(np+1), for integer nn and even integer pp. When pp is positive all nn of the edge modes are expected to move in the same direction, whereas for negative pp one mode moves in a direction opposite to the other n1n-1 modes. Using a chiral-Luttinger model to describe the edge channels, we show that for an ideal edge when pp is negative, a non-quantized and non-universal Hall conductance is predicted. The non-quantized conductance is associated with an absence of equilibration between the nn edge channels. To explain the robust experimental Hall quantization, it is thus necessary to incorporate impurity scattering into the model, to allow for edge equilibration. A perturbative analysis reveals that edge impurity scattering is relevant and will modify the low energy edge dynamics. We describe a non-perturbative solution for the random nn-channel edge, which reveals the existence of a new disorder-dominated phase, characterized by a stable zero temperature renormalization group fixed point. The phase consists of a single propagating charge mode, which gives a quantized Hall conductance, and n1n-1 neutral modes. The neutral modes all propagate at the same speed, and manifest an exact SU(n) symmetry. At finite temperatures the SU(n) symmetry is broken and the neutral modes decay with a finite rate which varies as T2T^2 at low temperatures. Various experimental predictions and implications which follow from the exact solution are described in detail, focusing on tunneling experiments through point contacts.Comment: 19 pages (two column), 5 post script figures appended, 3.0 REVTE

    Fate of the Josephson effect in thin-film superconductors

    Full text link
    The dc Josephson effect refers to the dissipationless electrical current -- the supercurrent -- that can be sustained across a weak link connecting two bulk superconductors. This effect is a probe of the fundamental nature of the superconducting state. Here, we analyze the case of two superconducting thin films connected by a point contact. Remarkably, the Josephson effect is absent at nonzero temperature, and the resistance across the contact is nonzero. Moreover, the point contact resistance is found to vary with temperature in a nearly activated fashion, with a UNIVERSAL energy barrier determined only by the superfluid stiffness characterizing the films, an angle characterizing the geometry, and whether or not the Coulomb interaction between Cooper pairs is screened. This behavior reflects the subtle nature of the superconductivity in two-dimensional thin films, and should be testable in detail by future experiments.Comment: 16 + 8 pages. 1 figure, 1 tabl

    Chiral Surface States in the Bulk Quantum Hall Effect

    Full text link
    In layered samples which exhibit a bulk quantum Hall effect (QHE), a two-dimensional (2d) surface ``sheath" of gapless excitations is expected. These excitations comprise a novel 2d chiral quantum liquid which should dominate the low temperature transport along the field (z-axis). For the integer QHE, we show that localization effects are completely absent in the ``sheath", giving a metallic z-axis conductivity. For fractional filling ν=1/3\nu =1/3, the ``sheath" is a 2d non-Fermi liquid, with incoherent z-axis transport and σzzT3\sigma_{zz} \sim T^3. Experimental implications for the Bechgaard salts are discussed.Comment: 4 pages, RevTeX 3.0, with two encapsulated postscript figures, which can be automatically included in-text if desired. The complete postscript file is available on the WWW at http://www.itp.ucsb.edu/~balents/sheath.p

    Aging ebbs the flow of thought: Adult age differences in mind wandering, executive control, and self-evaluation

    Get PDF
    Abstract: Two experiments examined the relations among adult aging, mind wandering, and executive-task performance, following from surprising laboratory findings that older adults report fewer taskunrelated thoughts (TUTs) than do younger adults (e.g., aging | mind wandering | executive control | consciousness | working memory
    corecore