11,823 research outputs found

    Symplectic-energy-momentum preserving variational integrators

    Get PDF
    The purpose of this paper is to develop variational integrators for conservative mechanical systems that are symplectic and energy and momentum conserving. To do this, a space–time view of variational integrators is employed and time step adaptation is used to impose the constraint of conservation of energy. Criteria for the solvability of the time steps and some numerical examples are given

    Variational integrators, the Newmark scheme, and dissipative systems

    Get PDF
    Variational methods are a class of symplectic-momentum integrators for ODEs. Using these schemes, it is shown that the classical Newmark algorithm is structure preserving in a non-obvious way, thus explaining the observed numerical behavior. Modifications to variational methods to include forcing and dissipation are also proposed, extending the advantages of structure preserving integrators to non-conservative systems

    Detection of a single-charge defect in a metal-oxide-semiconductor structure using vertically coupled Al and Si single-electron transistors

    Full text link
    An Al-AlO_x-Al single-electron transistor (SET) acting as the gate of a narrow (~ 100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET) can induce a vertically aligned Si SET at the Si/SiO_2 interface near the MOSFET channel conductance threshold. By using such a vertically coupled Al and Si SET system, we have detected a single-charge defect which is tunnel-coupled to the Si SET. By solving a simple electrostatic model, the fractions of each coupling capacitance associated with the defect are extracted. The results reveal that the defect is not a large puddle or metal island, but its size is rather small, corresponding to a sphere with a radius less than 1 nm. The small size of the defect suggests it is most likely a single-charge trap at the Si/SiO_2 interface. Based on the ratios of the coupling capacitances, the interface trap is estimated to be about 20 nm away from the Si SET.Comment: 5 pages and 5 figure

    Frictional Collisions Off Sharp Objects

    Get PDF
    This work develops robust contact algorithms capable of dealing with multibody nonsmooth contact geometries for which neither normals nor gap functions can be defined. Such situations arise in the early stage of fragmentation when a number of angular fragments undergo complex collision sequences before eventually scattering. Such situations precludes the application of most contact algorithms proposed to date

    Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach

    Get PDF
    We suggest an architecture for quantum computing with spin-pair encoded qubits in silicon. Electron-nuclear spin-pairs are controlled by a dc magnetic field and electrode-switched on and off hyperfine interaction. This digital processing is insensitive to tuning errors and easy to model. Electron shuttling between donors enables multi-qubit logic. These hydrogenic spin qubits are transferable to nuclear spin-pairs, which have long coherence times, and electron spin-pairs, which are ideally suited for measurement and initialization. The architecture is scalable to highly parallel operation.Comment: 4 pages, 5 figures; refereed and published version with improved introductio

    Nonlinear screening and ballistic transport in a graphene p-n junction

    Full text link
    We study the charge density distribution, the electric field profile, and the resistance of an electrostatically created lateral p-n junction in graphene. We show that the electric field at the interface of the electron and hole regions is strongly enhanced due to limited screening capacity of Dirac quasiparticles. Accordingly, the junction resistance is lower than estimated in previous literature.Comment: 4 pages, 2 figures. (v1) Original version (v2) Introduction largely rewritten, minor typos fixed throughou

    Symptomatic pes planus in children : a synthesis of allied health professional practices

    Get PDF
    This study sought to explore professional perspectives on the assessment and management of symptomatic pes planus in children. Data was collected from three professional groups (podiatrists, physiotherapists, and orthotists) with experience of managing foot problems in children. The survey was undertaken in the United Kingdom via a self-administered, online survey. Data was captured over a four-month period in 2018. Fifty-five health professionals completed the survey and the results highlighted that assessment techniques varied between professions, with standing tip-toe and joint range of motion being the most common. Treatment options for children were diverse and professionals were adopting different strategies as their first line intervention. All professions used orthoses. There were inconsistencies in how the health professionals assessed children presenting with foot symptoms, variation in how the condition was managed and differences in outcome measurement. These findings might be explained by the lack of robust evidence and suggests that more effort is needed to harmonise assessment and treatment approaches between professions. Addressing discrepancies in practice could help prioritise professional roles in this area, and better support the management of children with foot pain. [Abstract copyright: © The Author(s). 2020.
    corecore