14,399 research outputs found

    Short period eclipsing binary candidates identified using SuperWASP

    Get PDF
    We present light curves and periods of 53 candidates for short period eclipsing binary stars identified by SuperWASP. These include 48 newly identified objects with periods <2 × 10^4 s (~0.23 d), as well as the shortest period binary known with main sequence components (GSC2314–0530 = 1SWASP J022050.85 + 332047.6) and four other previously known W UMa stars (although the previously reported periods for two of these four are shown to be incorrect). The period distribution of main sequence contact binaries shows a sharp cut-off at a lower limit of around 0.22 d, but until now, very few systems were known close to this limit. These new candidates will therefore be important for understanding the evolution of low mass stars and to allow investigation of the cause of the period cut-off

    A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    Get PDF
    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km

    A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    Get PDF
    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known

    Modulation and heliocentric gradient of low energy cosmic rays near solar minimum, 1965

    Get PDF
    Modulation and heliocentric gradient of low energy cosmic rays near solar minimum, 196

    A survey of the total radiation in space observed by the OGO satellites, 5 September 1964 - 27 May 1968

    Get PDF
    Graphical and tabular summaries of ionization rates in space recorded by OGO spacecraft ion chamber

    Simulations for Multi-Object Spectrograph Planet Surveys

    Get PDF
    Radial velocity surveys for extra-solar planets generally require substantial amounts of large telescope time in order to monitor a sufficient number of stars. Two of the aspects which can limit such surveys are the single-object capabilities of the spectrograph, and an inefficient observing strategy for a given observing window. In addition, the detection rate of extra-solar planets using the radial velocity method has thus far been relatively linear with time. With the development of various multi-object Doppler survey instruments, there is growing potential to dramatically increase the detection rate using the Doppler method. Several of these instruments have already begun usage in large scale surveys for extra-solar planets, such as FLAMES on the VLT and Keck ET on the Sloan 2.5m wide-field telescope. In order to plan an effective observing strategy for such a program, one must examine the expected results based on a given observing window and target selection. We present simulations of the expected results from a generic multi-object survey based on calculated noise models and sensitivity for the instrument and the known distribution of exoplanetary system parameters. We have developed code for automatically sifting and fitting the planet candidates produced by the survey to allow for fast follow-up observations to be conducted. The techniques presented here may be applied to a wide range of multi-object planet surveys.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Magnetic field-assisted manipulation and entanglement of Si spin qubits

    Full text link
    Architectures of donor-electron based qubits in silicon near an oxide interface are considered theoretically. We find that the precondition for reliable logic and read-out operations, namely the individual identification of each donor-bound electron near the interface, may be accomplished by fine-tuning electric and magnetic fields, both applied perpendicularly to the interface. We argue that such magnetic fields may also be valuable in controlling two-qubit entanglement via donor electron pairs near the interface.Comment: 4 pages, 4 figures. 1 ref and 1 footnote adde

    High-Field Electrical Transport in Single-Wall Carbon Nanotubes

    Full text link
    Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10^9 A/cm^2. As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.Comment: 4 pages, 3 eps figure

    Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft

    Get PDF
    Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated
    • …
    corecore