49 research outputs found

    Direct laser printing of thin-film polyaniline devices

    Full text link
    We report the fabrication of electrically functional polyaniline thin-film microdevices. Polyaniline films were printed in the solid phase by Laser Induced Forward Transfer directly between Au electrodes on a Si/SiO2 substrate. To apply solid-phase deposition, aniline was in situ polymerized on quartz substrates. Laser deposition preserves the morphology of the films and delivers sharp features with controllable dimensions. The electrical characteristics of printed polyaniline present ohmic behavior, allowing for electroactive applications. Results on gas sensing of ammonia are presented.Comment: In Pres

    Optical tweezers with enhanced efficiency based on laser-structured substrates

    Full text link
    We present an optical nanotrapping setup that exhibits enhanced efficiency, based on localized plasmonic fields around sharp metallic features. The substrates consist of laser-structured silicon wafers with quasi-ordered microspikes on the surface, coated with a thin silver layer. The resulting optical traps show orders of magnitude enhancement of the trapping force and the effective quality factor

    Plasmon enhanced optical tweezers with gold-coated black silicon

    No full text
    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects
    corecore