6 research outputs found

    Analysis of the Role of Tortuosity and Infiltration Constants in the Beerkan Method

    Get PDF
    It has recently been proposed to couple the Beerkan method with the Beerkan Estimation of Soil Transfer parameters (BEST) algorithm to facilitate the estima- tion of soil hydraulic parameters from an infiltration experiment. Although this simplified field procedure is relatively rapid and inexpensive, it has been doubt - ed if the Beerkan method can represent a valid and reliable alternative to other conventional methods. This study explored the impact of the tortuosity param- eter (p) and two infiltration constants included in the BEST algorithm using a sensitivity analysis applied to three experimental soils. The analysis that was validated using the numerical model HYDRUS 2D/3D indicates that the tortuosity is relatively insignificant compared to parameters b and g that have a large impact on the estimation procedure

    Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D

    No full text
    a b s t r a c t Due to the decreasing availability of water resources and the increasing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by methods like subsurface drip irrigation (SDI) systems, is a pressing concern for agricultural authorities. To properly manage SDI systems, and increase the efficiency of the water/fertilizer use while reducing water losses due to evaporation, the precise distribution of water around the emitters must be known. In this paper, the Windows-based computer software package HYDRUS-2D, which numerically simulates water, heat, and/or solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water around the emitter in a clay loam soil. The simulation results were compared with two sets of laboratory and field experiments involving SDI with emitters installed at different depths, and were evaluated using the root-mean-square-error (RMSE). The RMSE at different locations varied between 0.011 and 0.045 for volumetric water contents, and between 0.98 and 4.36 cm for wetting dimensions. Based on these values, it can be concluded that the correspondence between simulations and observations was very good

    Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation

    Get PDF
    Due to increasing competition for water resources by urban, industrial, and agricultural users, the proportion of agricultural water use is gradually decreasing. To maintain or increase agricultural production, new irrigation systems, such as surface or subsurface drip irrigation systems, will need to provide higher water use efficiency than those traditionally used. Several models have been developed to predict the dimensions of wetting patterns, which are important to design optimal drip irrigation system, using variables such as the emitter discharge, the volume of applied water, and the soil hydraulic properties. In this work, we evaluated the accuracy of several approaches used to estimate wetting zone dimensions by comparing their predictions with field and laboratory data, including the numerical HYDRUS-2D model, the analytical WetUp software, and selected empirical models. The soil hydraulic parameters for the HYDRUS-2D simulations were estimated using either Rosetta for the laboratory experiments and inverse analysis for the field experiments. The mean absolute error (MAE) was used to compare the model predictions and observations of wetting zone dimensions. MAE for different experiments and directions varied from 0.87 to 10.43 cm for HYDRUS-2D, from 1 to 58.1 cm for WetUp, and from 1.34 to 12.24 cm for other empirical models

    Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D

    No full text
    Due to the decreasing availability of water resources and the increasing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by methods like subsurface drip irrigation (SDI) systems, is a pressing concern for agricultural authorities. To properly manage SDI systems, and increase the efficiency of the water/fertilizer use while reducing water losses due to evaporation, the precise distribution of water around the emitters must be known. In this paper, the Windows-based computer software package HYDRUS-2D, which numerically simulates water, heat, and/or solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water around the emitter in a clay loam soil. The simulation results were compared with two sets of laboratory and field experiments involving SDI with emitters installed at different depths, and were evaluated using the root-mean-square-error (RMSE). The RMSE at different locations varied between 0.011 and 0.045 for volumetric water contents, and between 0.98 and 4.36cm for wetting dimensions. Based on these values, it can be concluded that the correspondence between simulations and observations was very good.Subsurface drip irrigation HYDRUS-2D Wetting dimensions

    Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation

    No full text
    Abstract Due to increasing competition for water resources by urban, industrial, and agricultural users, the proportion of agricultural water use is gradually decreasing. To maintain or increase agricultural production, new irrigation systems, such as surface or subsurface drip irrigation systems, will need to provide higher water use efficiency than those traditionally used. Several models have been developed to predict the dimensions of wetting patterns, which are important to design optimal drip irrigation system, using variables such as the emitter discharge, the volume of applied water, and the soil hydraulic properties. In this work, we evaluated the accuracy of several approaches used to estimate wetting zone dimensions by comparing their predictions with field and laboratory data, including the numerical HYDRUS-2D model, the analytical WetUp software, and selected empirical models. The soil hydraulic parameters for the HYDRUS-2D simulations were estimated using either Rosetta for the laboratory experiments and inverse analysis for the field experiments. The mean absolute error (MAE) was used to compare the model predictions and observations of wetting zone dimensions. MAE for different experiments and directions varied from 0.87 to 10.43 cm for HYDRUS-2D, from 1 to 58.1 cm for WetUp, and from 1.34 to 12.24 cm for other empirical models
    corecore