4,556 research outputs found
Effects of dust absorption on spectroscopic studies of turbulence
We study the effect of dust absorption on the recovery velocity and density
spectra as well as on the anisotropies of magnetohydrodynamic turbulence using
the Velocity Channel Analysis (VCA), Velocity Coordinate Spectrum (VCS) and
Velocity Centroids. The dust limits volume up to an optical depth of unity. We
show that in the case of the emissivity proportional to the density of
emitters, the effects of random density get suppressed for strong dust
absorption intensity variations arise from the velocity fluctuations only.
However, for the emissivity proportional to squared density, both density and
velocity fluctuations affect the observed intensities. We predict a new
asymptotic regime for the spectrum of fluctuations for large scales exceeding
the physical depths to unit optical depth. The spectrum gets shallower by unity
in this regime. In addition, the dust absorption removes the degeneracy
resulted in the universal spectrum of intensity fluctuations of
self-absorbing medium reported by Lazarian \& Pogosyan. We show that the
predicted result is consistent with the available HII region emission data. We
find that for sub-Alfv\'enic and trans-Alfv\'enic turbulence one can get the
information about both the magnetic field direction and the fundamental
Alfv\'en, fast and slow modes that constitute MHD turbulence.Comment: Published in MNRAS, minor changes to match the published versio
Current-Induced Step Bending Instability on Vicinal Surfaces
We model an apparent instability seen in recent experiments on current
induced step bunching on Si(111) surfaces using a generalized 2D BCF model,
where adatoms have a diffusion bias parallel to the step edges and there is an
attachment barrier at the step edge. We find a new linear instability with
novel step patterns. Monte Carlo simulations on a solid-on-solid model are used
to study the instability beyond the linear regime.Comment: 4 pages, 4 figure
On generalized cluster algorithms for frustrated spin models
Standard Monte Carlo cluster algorithms have proven to be very effective for
many different spin models, however they fail for frustrated spin systems.
Recently a generalized cluster algorithm was introduced that works extremely
well for the fully frustrated Ising model on a square lattice, by placing bonds
between sites based on information from plaquettes rather than links of the
lattice. Here we study some properties of this algorithm and some variants of
it. We introduce a practical methodology for constructing a generalized cluster
algorithm for a given spin model, and investigate apply this method to some
other frustrated Ising models. We find that such algorithms work well for
simple fully frustrated Ising models in two dimensions, but appear to work
poorly or not at all for more complex models such as spin glasses.Comment: 34 pages in RevTeX. No figures included. A compressed postscript file
for the paper with figures can be obtained via anonymous ftp to
minerva.npac.syr.edu in users/paulc/papers/SCCS-527.ps.Z. Syracuse University
NPAC technical report SCCS-52
Cluster update and recognition
We present a fast and robust cluster update algorithm that is especially
efficient in implementing the task of image segmentation using the method of
superparamagnetic clustering. We apply it to a Potts model with spin
interactions that are are defined by gray-scale differences within the image.
Motivated by biological systems, we introduce the concept of neural inhibition
to the Potts model realization of the segmentation problem. Including the
inhibition term in the Hamiltonian results in enhanced contrast and thereby
significantly improves segmentation quality. As a second benefit we can - after
equilibration - directly identify the image segments as the clusters formed by
the clustering algorithm. To construct a new spin configuration the algorithm
performs the standard steps of (1) forming clusters and of (2) updating the
spins in a cluster simultaneously. As opposed to standard algorithms, however,
we share the interaction energy between the two steps. Thus the update
probabilities are not independent of the interaction energies. As a
consequence, we observe an acceleration of the relaxation by a factor of 10
compared to the Swendson and Wang procedure.Comment: 4 pages, 2 figure
Dual Monte Carlo and Cluster Algorithms
We discuss the development of cluster algorithms from the viewpoint of
probability theory and not from the usual viewpoint of a particular model. By
using the perspective of probability theory, we detail the nature of a cluster
algorithm, make explicit the assumptions embodied in all clusters of which we
are aware, and define the construction of free cluster algorithms. We also
illustrate these procedures by rederiving the Swendsen-Wang algorithm,
presenting the details of the loop algorithm for a worldline simulation of a
quantum 1/2 model, and proposing a free cluster version of the
Swendsen-Wang replica method for the random Ising model. How the principle of
maximum entropy might be used to aid the construction of cluster algorithms is
also discussed.Comment: 25 pages, 4 figures, to appear in Phys.Rev.
From Discrete Hopping to Continuum Modeling on Vicinal Surfaces with Applications to Si(001) Electromigration
Coarse-grained modeling of dynamics on vicinal surfaces concentrates on the
diffusion of adatoms on terraces with boundary conditions at sharp steps, as
first studied by Burton, Cabrera and Frank (BCF). Recent electromigration
experiments on vicinal Si surfaces suggest the need for more general boundary
conditions in a BCF approach. We study a discrete 1D hopping model that takes
into account asymmetry in the hopping rates in the region around a step and the
finite probability of incorporation into the solid at the step site. By
expanding the continuous concentration field in a Taylor series evaluated at
discrete sites near the step, we relate the kinetic coefficients and
permeability rate in general sharp step models to the physically suggestive
parameters of the hopping models. In particular we find that both the kinetic
coefficients and permeability rate can be negative when diffusion is faster
near the step than on terraces. These ideas are used to provide an
understanding of recent electromigration experiment on Si(001) surfaces where
step bunching is induced by an electric field directed at various angles to the
steps.Comment: 10 pages, 4 figure
- …