5 research outputs found

    Sesamin stimulates osteoblast differentiation through p38 and ERK1/2 MAPK signaling pathways

    Get PDF
    BACKGROUND: Osteoporosis is a worldwide health problem predominantly affecting post-menopausal women. Therapies aimed at increasing bone mass in osteoporetic patients lag behind comparable investigation of therapeutic strategies focusing on the bone resorption process. Sesamin, a major lignan compound found in Sesamun indicum Linn., has a variety of pharmacological effects, though its activity on bone cell function is unclear. Herein we examine the effect of this lignan on osteoblast differentiation and function. METHOD: Cell cytotoxicity and proliferative in hFOB1.19 were examined by MTT and alamar blue assay up to 96 h of treatment. Gene expression of COL1, ALP, BMP-2, Runx2, OC, RANKL and OPG were detected after 24 h of sesamin treatment. ALP activity was measured at day 7, 14 and 21 of cultured. For mineralized assay, ADSCs were cultured in the presence of osteogenic media supplement with or without sesamin for 21 days and then stained with Alizarin Red S. MAPK signaling pathway activation was observed by using western blotting. RESULTS: Sesamin promoted the gene expression of COL1, ALP, OCN, BMP-2 and Runx2 in hFOB1.19. On the other hand, sesamin was able to up-regulate OPG and down-regulate RANKL gene expression. ALP activity also significantly increased after sesamin treatment. Interestingly, sesamin induced formation of mineralized nodules in adipose derived stem cells (ADSCs) as observed by Alizarin Red S staining; this implies that sesamin has anabolic effects both on progenitor and committed cell stages of osteoblasts. Western blotting data showed that sesamin activated phosphorylation of p38 and ERK1/2 in hFOB1.19. CONCLUSIONS: The data suggest that sesamin has the ability to trigger osteoblast differentiation by activation of the p38 and ERK MAPK signaling pathway and possibly indirectly regulate osteoclast development via the expression of OPG and RANKL in osteoblasts. Therefore, sesamin may be a promising phytochemical that could be developed for supplementation of osteoporotic therapy

    Sesamin stimulates osteoblast differentiation through p38 and ERK1/2 MAPK signaling pathways

    No full text
    Abstract Background Osteoporosis is a worldwide health problem predominantly affecting post-menopausal women. Therapies aimed at increasing bone mass in osteoporetic patients lag behind comparable investigation of therapeutic strategies focusing on the bone resorption process. Sesamin, a major lignan compound found in Sesamun indicum Linn., has a variety of pharmacological effects, though its activity on bone cell function is unclear. Herein we examine the effect of this lignan on osteoblast differentiation and function. Method Cell cytotoxicity and proliferative in hFOB1.19 were examined by MTT and alamar blue assay up to 96 h of treatment. Gene expression of COL1, ALP, BMP-2, Runx2, OC, RANKL and OPG were detected after 24 h of sesamin treatment. ALP activity was measured at day 7, 14 and 21 of cultured. For mineralized assay, ADSCs were cultured in the presence of osteogenic media supplement with or without sesamin for 21 days and then stained with Alizarin Red S. MAPK signaling pathway activation was observed by using western blotting. Results Sesamin promoted the gene expression of COL1, ALP, OCN, BMP-2 and Runx2 in hFOB1.19. On the other hand, sesamin was able to up-regulate OPG and down-regulate RANKL gene expression. ALP activity also significantly increased after sesamin treatment. Interestingly, sesamin induced formation of mineralized nodules in adipose derived stem cells (ADSCs) as observed by Alizarin Red S staining; this implies that sesamin has anabolic effects both on progenitor and committed cell stages of osteoblasts. Western blotting data showed that sesamin activated phosphorylation of p38 and ERK1/2 in hFOB1.19. Conclusions The data suggest that sesamin has the ability to trigger osteoblast differentiation by activation of the p38 and ERK MAPK signaling pathway and possibly indirectly regulate osteoclast development via the expression of OPG and RANKL in osteoblasts. Therefore, sesamin may be a promising phytochemical that could be developed for supplementation of osteoporotic therapy.</p

    Leptin alone and in combination with interleukin-1-beta induced cartilage degradation potentially inhibited by EPA and DHA

    No full text
    <p>Osteoarthritis (OA) is the most common form of arthritis. Obesity has been believed to be an important risk factor for OA development and the progression of not only load-bearing joints, but low-load-bearing joints as well. Increased leptin has been the focus of a link between obesity and OA. In this study, the effects of pathological (100ng/ml) or supra-pathological (10μg/ml) concentrations of leptin alone or in combination with IL1β on cartilage metabolisms were studied in porcine cartilage explant. The involved mechanisms were examined in human articular chondrocytes (HACs). Moreover, the protective effect of omega-3 polyunsaturated acids, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) was also investigated. Leptin (10μg/ml) alone or in combination with IL1β could induce cartilage destruction, although lower concentrations had no effect. Leptin activated NFκB, ERK, JNK and p38 in HACs, which led to the induction of MMP3, MMP13 and ADAMTS4 secretions. The combined effect could further induce those enzymes through the additive effect on activation of NFκB and JNK. Interestingly, both EPA and DHA could inhibit cartilage damage induced by leptin plus IL1β by reducing the activation of NFκB and JNK, which led to the decrease of ADAMTS4 secretion. Altogether, only a supra-pathological concentration of leptin alone or in combination with IL1β could induce cartilage destruction, whereas a pathological one could not. This effect could be inhibited by EPA and DHA. To gain greater understanding of the link between leptin and OA, the effect of different levels of leptin on several states of OA cartilage requires further investigation.</p
    corecore