622 research outputs found

    Approximating RR Lyrae light curves using cubic polynomials

    Full text link
    In this paper, we use cubic polynomials to approximate RR Lyrae light curves and apply the method to HST data of RR Lyraes in the halo of M31. We compare our method to the standard method of Fourier decomposition and find that the method of cubic polynomials eliminates virtually all ringing effects and does so with significantly fewer parameters than the Fourier technique. Further, for RRc stars the parameters in the fit are all physical. Our study also reveals a number of additional periodicites in this data not found previously: we find 23 RRc stars, 29 RRab stars and 3 multiperiodic stars.Comment: 6 pages, MNRAS accepte

    Period Color and Amplitude Color relations for MACHO project LMC RR Lyraes

    Full text link
    In this paper, we analyze period color and amplitude color relations at minimum, mean and maximum VV band light for 6391 RRab stars in the Large Magellanic Cloud obtained by the MACHO project. Specifically, we find that color and amplitude are nearly independent of period at minimum light but that there exists a definite relation between period and color and amplitude and color at maximum light. These two properties are easily explained by the application of the Stefan Boltzmann law and the interaction of the photosphere and hydrogen ionization front at minimum light. When we examine the slope of the period color relation as a function of phase, we find that the slope varies significantly with phase and is small for a wide range of phases around minimum light. This suggests that another factor that needs to be considered when trying to understand RR Lyrae observed properties is their behavior at different phases during a pulsation cycle.Comment: Sumitted for publication to MNRAS Letter

    Principal Component Analysis of RR Lyrae light curves

    Full text link
    In this paper, we analyze the structure of RRab star light curves using Principal Component Analysis. We find this is a very efficient way to describe many aspects of RRab light curve structure: in many cases, a Principal Component fit with 9 parameters can describe a RRab light curve including bumps whereas a 17 parameter Fourier fit is needed. As a consequence we show statistically why the amplitude is also a good summary of the structure of a RR Lyrae light curve. We also use our analysis to derive an empirical relation relating absolute magnitude to light curve structure. In comparing this formula to those derived from exactly the same dataset but using Fourier parameters, we find that the Principal Component Analysis approach has disticnt advantages. These advantages are, firstly, that the errors on the coefficients in such formulae are smaller, and secondly, that the correlation between Principal Components is significantly smaller than the correlation between Fourier amplitudes. These two factors lead to reduced formal errors, in some cases estimated to be a factor of 2, on the eventual fitted value of the absolute magnitude. This technique will prove very useful in the analysis of data from existing large scale survey projects concerning variable stars.Comment: 8 pages, 10 figures, revised version, accepted for publication to MNRA

    International poverty projections

    Get PDF
    The authors investigate the methodology used in projections of international poverty - particularly those used in many World Bank documents. The methodology, as developed by Ahluwalia, Carter, and Chenery (1979) in an influential paper, is examined critically and subjected to sensitivity analysis. It was found that their projections of poverty are not robust to reasonable changes and improvements in the methodology; in some cases, even the projections'time trend is reversed. Thus, analysts and policymakers should treat such global forecasts of poverty with caution.Economic Theory&Research,Achieving Shared Growth,Economic Conditions and Volatility,Inequality,Environmental Economics&Policies

    Semi-Empirical Cepheid Period-Luminosity Relations in Sloan Magnitudes

    Full text link
    In this paper we derive semi-empirical Cepheid period-luminosity (P-L) relations in the Sloan ugriz magnitudes by combining the observed BVI mean magnitudes from the Large Magellanic Cloud Cepheids (LMC) and theoretical bolometric corrections. We also constructed empirical gr band P-L relations, using the publicly available Johnson-Sloan photometric transformations, to be compared with our semi-empirical P-L relations. These two sets of P-L relations are consistent with each other.Comment: 4 pages, 2 tables and 2 figures, ApJ accepte

    Period-Color and Amplitude-Color Relations in Classical Cepheid Variables - VI. New Challenges for Pulsation Models

    Full text link
    We present multiphase Period-Color/Amplitude-Color/Period-Luminosity relations using OGLE III and Galactic Cepheid data and compare with state of the art theoretical pulsation models. Using this new way to compare models and observations, we find convincing evidence that both Period-Color and Period-Luminosity Relations as a function of phase are dynamic and highly nonlinear at certain pulsation phases. We extend this to a multiphase Wesenheit function and find the same result. Hence our results cannot be due to reddening errors. We present statistical tests and the urls of movies depicting the Period-Color/Period Luminosity and Wesenheit relations as a function of phase for the LMC OGLE III Cepheid data: these tests and movies clearly demonstrate nonlinearity as a function of phase and offer a new window toward a deeper understanding of stellar pulsation. When comparing with models, we find that the models also predict this nonlinearity in both Period-Color and Period-Luminosity planes. The models with (Z=0.004, Y=0.25) fare better in mimicking the LMC Cepheid relations, particularly at longer periods, though the models predict systematically higher amplitudes than the observations

    The Role of Opacities in Stellar Pulsation

    Get PDF
    We examine the role of opacities in stellar pulsation with reference to Cepheids and RR Lyraes, and examine the effect of augmented opacities on the theoretical pulsation light curves in key temperature ranges. The temperature ranges are provided by recent experimental and theoretical work that have suggested that the iron opacities have been considerably underestimated. For Cepheids, we find that the augmented opacities have noticeable effects in certain period ranges (around logP1\log P \approx 1) even though there is a degeneracy with mixing length. We also find significant effects in theoretical models of B-star pulsators.Comment: 6 pages, 3 Figures, Proceeding for the "Workshop on Astrophysical Opacities
    corecore