105 research outputs found

    Period-colour and amplitude-colour relations in classical Cepheid variables IV: The multi-phase relations

    Full text link
    The superb phase resolution and quality of the OGLE data on LMC and SMC Cepheids, together with existing data on Galactic Cepheids, are combined to study the period-colour (PC) and amplitude-colour (AC) relations as a function of pulsation phase. Our results confirm earlier work that the LMC PC relation (at mean light) is more consistent with two lines of differing slopes, separated at a period of 10 days. However, our multi-phase PC relations reveal much new structure which can potentially increase our understanding of Cepheid variables. These multi-phase PC relations provide insight into why the Galactic PC relation is linear but the LMC PC relation is non-linear. This is because the LMC PC relation is shallower for short (log P < 1) and steeper for long (log P > 1) period Cepheids than the corresponding Galactic PC relation. Both of the short and long period Cepheids in all three galaxies exhibit the steepest and shallowest slopes at phases around 0.75-0.85, respectively. A consequence is that the PC relation at phase ~0.8 is highly non-linear. Further, the Galactic and LMC Cepheids with log P > 1 display a flat slope in the PC plane at phases close to the maximum light. When the LMC period-luminosity (PL) relation is studied as a function of phase, we confirm that it changes with the PC relation. The LMC PL relation in V- and I-band near the phase of 0.8 provides compelling evidence that this relation is also consistent with two lines of differing slopes joined at a period close to 10 days.Comment: 12 pages, 1 table and 13 figures, MNRAS accepte

    Light Curve Parameters of Cepheid and RR Lyrae Variables at Multiple Wavelengths −- Models vs. Observations

    Get PDF
    We present results from a comparative study of light curves of Cepheid and RR Lyrae stars in the Galaxy and the Magellanic Clouds with their theoretical models generated from the stellar pulsation codes. Fourier decomposition method is used to analyse the theoretical and the observed light curves at multiple wavelengths. In case of RR Lyrae stars, the amplitude and Fourier parameters from the models are consistent with observations in most period bins except for low metal-abundances (Z<0.004Z<0.004). In case of Cepheid variables, we observe a greater offset between models and observations for both the amplitude and Fourier parameters. The theoretical amplitude parameters are typically larger than those from observations, except close to the period of 1010 days. We find that these discrepancies between models and observations can be reduced if a higher convective efficiency is adopted in the pulsation codes. Our results suggest that a quantitative comparison of light curve structure is very useful to provide constraints for the input physics to the stellar pulsation models.Comment: 8 pages, 6 figures. To appear in "Proceedings of the 2nd Belgo-Indian Network for Astronomy & Astrophysics (BINA) workshop, held in Brussels (Belgium), 9-12 October 2018

    Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

    Full text link
    Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.Comment: 6 pages, 3 tables and 4 figures. Published in IEEE Xplore for 2013 IEEE International Conference on Space Science and Communication (IconSpace2013
    • …
    corecore